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Introduction

We look the problem

− div(A(
x
ε

)∇u) + u = f ,

on Rn, f ∈ L2(Rn), u ∈ H1(Rn). A is assumed to be one
periodic symmetric, positive definite and bounded, i.e., there
exist α, β > 0

α|ξ|2 ≤ A(x)ξ · ξ ≤ β|ξ|2, ∀x , ξ ∈ Rn.

Aεu := − div A(
x
ε

)∇u.

Note that
(Aε + I)−1 : L2(Rn)→ L2(Rn)

is a continuous operator.



Introduction

The limit problem is given by (homogenization theory)

− div(A0∇u) + u = f ,

A0ξ · ξ = min
ϕ∈H1(Y)

ˆ
Y

A(y)(ξ +∇ϕ) · (ξ +∇ϕ),

where Y is a flat torrus in Rn.

A0 = − div(A0∇u).

Claim: If uε is a solution of ε-problem that corresponds to f ε

and if f ε ⇀ f in L2, then the uε ⇀ u in H1, where u is a solution
of zero problem.

The result can be quantified.



Introduction

In a series of papers Birman, Suslina proved:

‖(Aε + I)−1 − (A+ I)−1‖L2(Rn)→L2(Rn) ≤ Cε,

‖(Aε + I)−1 − (A+ I)−1 − εK (ε)‖L2(Rn)→H1(Rn) ≤ Cε,

where K (ε) is a corrector.
Later this was used for the estimates on finite domain by
Suslina (2012), when one needs to include estimates of
boundary layer (previous works with less sharp estimate by
Zhikov, Pastukhova by Steklov smoothing, 2005, Griso by
unfolding 2004).



Resolvent norm approximation in high contrast (Cherednichenko,
Cooper)

We explain the approach of Cherednichenko, Cooper (ARMA
2016) in the context of high contrast.

− div(A(
x
ε

)∇u) + u = f ,

on Rn, f ∈ L2(Rn), u ∈ H1(Rn). A is assumed to be 1-periodic:

A = χ1A1 + χ0ε
2A0 on Y,

where χ0 is a characteristic function of e.g. ball B ⊂ (0,1)n,
χ1 = 1− χ0, A0,A1 are symmetric, uniformily elliptic.
The qualitative analysis of these kind of operators was given by
Zhikov. The limit operator is defined on the subspace of
L2(Rn × Y) and its spectrum has band gap structure.



Resolvent norm approximation in high contrast (Cherednichenko,
Cooper)

Cherednichenko, Cooper found the operator Ãε which is
simpler then the starting one and which satisfies

‖(Aε + I)−1 − (Ãε + I)−1P̃ε‖L2(Rn)→L2(Rn) ≤ Cε.

The operator Ãε is still ε- dependent and P̃ε is a kind of
projection. Resolvent approximation implies the approximation
of spectrum of the operator Aε in the Hausdorff sense. The
operator Ãε differs from the limit operator obtained by
qualitative analysis of Zhikov, since it contains more
information. However, it is still computionally much cheaper
than the original one. The method offers the way not only to
prove the estimates, but also to change (or slightly perturb) the
expected approximate operator.



Resolvent norm approximation in high contrast (Cherednichenko,
Cooper)

Q′ = [−π, π)n, Q = [0,1)n.

We define the isometry Uε : L2(Rn)→ L2(ε−1Q′ ×Q
)

by

(Uεf )(θ, y) =

(
ε2

2π

)n/2 ∑
n∈Zn

f
(
ε(y + n)

)
exp
(
−iεθ(y + n)

)
,

θ ∈ ε−1Q′, y ∈ Q.

This isometry Uε = GεT ε is a composition of usual scaled
Gelfand transform Gε : L2(Rn)→ L2(ε−1Q′ × εQ

)
:

(Gεf )(θ, z) =
( ε

2π

)n/2 ∑
n∈Zn

f
(
z +εn

)
exp
(
−iεθ(y +n)

)
, z ∈ εQ,

and the scaling transform T ε : L2(ε−1Q′× εQ)→ L2(ε−1Q′×Q)

(T εh)(θ, y) = εn/2h(θ, εy).



Resolvent norm approximation in high contrast (Cherednichenko,
Cooper)

Then we have that

Uε(Aε + I)−1(Uε)−1 =

ˆ ⊕
ε−1Q′

(Bε,θ + I)−1dθ,

where Bε,θ is the operator generated by the sesquilinear form

bε,θ(u, v) =

ˆ
Q

(ε−2A1+A0)(∇+iεθ)u·(∇+ iεθ)v , u, v ∈ H1
#(Q)

or

b̃ε,θ(u, v) =

ˆ
Q

(ε−2A1 + A0)∇u · ∇v , u, v ∈ H1
χ(Q), χ = εθ.



Resolvent norm approximation in high contrast (Cherednichenko,
Cooper)

For every parameter θ ∈ ε−1Q′ we obtain a differential equation
on a compact domain Q (the equation can be looked with
periodic or quasi-periodic boundary condition). This is a
standard approach for periodic problems. In this way one can
divide the spectrum of the original operator (on a non-compact
domain) as a union of continuum family of spectrum of
operators on a compact domain. One can even characterize
generalized eigenfunctions of the original operator.
The novelty of the approach of Cherednichenko and Cooper
consists in finding the operators Bε,θhom such that

‖(Bε,θ + I)−1 − (Bε,θhom + I)−1Pε‖L2(Q)→L2(Q) ≤ Cε,

where C is independent of θ and Pε is a projection.



Resolvent norm approximation in high contrast (Cherednichenko,
Cooper)

The methodology consists in doing formal asymptotics for the
solution of the equation

uεθ =
∞∑

n=0

εnu(n)
θ , u(n)

θ ∈ H1
#(Q).

plugging it into equation and obtaining the approximate
solution. The difficulties arise in the fact that one has to do the
estimates and the fact that there are two changing parameters
(ε and θ) and that there are no rules (ansatz) how to do this
asymptotics in the way to obtain the estimates. They had to
analyze separately so called inner region (|θ| ≤ 1), intermediate
region 1 ≤ |θ| ≤ ε−1/2) and upper region |θ| ≥ ε−1/2. In the
case without high contrast upper region can be neglected, i.e.,
the good approximation of the solution is zero.



Problem formulation

ˆ
Ωh

A
(

x1

ε
,
x2

ε

)
sym∇uh : sym∇φh +

ˆ
Ωh

uh · φh =

ˆ
Ωh

f h · φh.

Here

Ωh = R2 × (−h/2,h/2), uh, φh ∈ H1(Ωh,R3), f h ∈ L2(Ωh,R3).

A is one periodic, bounded and coercive on symmetric
matrices, i.e., there exist α, β > 0 such that

α|M|2 ≤ A(y1, y2)M ·M ≤ β|M|2, ∀(y1, y2) ∈ [0,1]2,M ∈ R3×3
sym .



Problem formulation

We transform the problem on the domain Ω = R2 × I,
I = (−1

2 ,
1
2) by doing change x3 = xh

3 /h. We do the Gelfand
transform and scale in-plane components yα = xα/ε, for
α = 1,2. After that we obtain:
ˆ

Q
A(y) sym

(
∇̃ε,h,θ(u1,u2,u3)

)
: sym

(
∇̃ε,h,θ(ϕ1, ϕ2, ϕ3)

)
+

ˆ
Q

uαϕα +

ˆ
Q

u3ϕ3 =

ˆ
Q

fi ϕi , ∀ϕ ∈ H1
#(Q,C3).

Here
Q = Qr × I, Qr = (0,1)2, θ ∈ ε−1(−π, π)2.

(∇̃ε,h,χv)iα :=
1
ε

(∂α + iχα)vi ,

(∇̃ε,h,χv)i3 :=
1
h
∂3vi , α = 1,2, i = 1,2,3.



Problem formulation

We will look the regime ε = h. We obtain:

1
ε2

ˆ
Q

A(y) sym∇̃y ,x3(u1,u2,u3) : sym∇̃y ,x3(ϕ1, ϕ2, ϕ3)

+

ˆ
Q

uαϕα +

ˆ
Q

u3ϕ3 =

ˆ
Q

fαϕα +

ˆ
Q

f3ϕ3, ∀ϕ ∈ H1
#(Q,C3).

Here

(∇̃u)iα = ∂αui + iχαui , (∇̃u)i3 = ∂3ui , α = 1,2, i = 1,2,3.

The equations can be looked on the space of χ- quasiperiodic
functions H1

χ(Q,C3) in which case we replace ∇̃ by ∇.



Limit equation on finite domain

Ciarlet and Kesavan (1981) looked the spectral problem on the
bounded domain Ω = ω × I, where ω ⊂ R2 is open bounded set
with Lipschitz boundary in the case of isotropic homogeneous
plate (clamped plate). After scaling the forces in the way
f h = (h2f1,h2f2,h3f3), the displacement in the way
uh = (h2u1,h2u2,hu3) and the density (spectrum) with h2 in the
limit they obtained the folowing problem: find u3 ∈ H2(ω,R3),
u3 = ∂nu3 = 0 on ∂ω that satisfies
ˆ
ω

(
4λµ

3(λ+ 2µ)
∆u3∆v3 +

4µ
3
∂αβu3∂αβv3

)
= 2Λ

ˆ
ω

u3v3,

v3 ∈ H2(ω,R3), v3 = ∂nv3 = 0 on ∂ω.



Limit equation on finite domain

Comments:
I It is proved that n-th eigenvalue of h problem (after scaled

with h2) converges to the n-th eigenvalue of the limit
problem. The similar claim is valid for eigenfunctions.

I The limit equation is the spectral problem of forth order for
the vertical displacement. It is proved that eigenvalues of
the original problem converge to the eigenvalues of this
limit problem in the Hausdorff sense;

I The fact that we obtain the limit problem only for u3 is the
consequence of scaling for the density and the fact that in
the limit problem (in the case of isotropic media) the
equations for the vertical displacement separate from the
equations of horizontal displacements;

I For eigenfunctions the limit horizontal displacement is
u1 = −x3∂1u3, u2 = −x3∂2u3.



Limit equation on finite domain

I Quantitative estimates are proved by Dauge, Djurdjević,
Faou, Rössle (1999). They divided the problem into two
invariant subspaces, in one subspace there is the
spectrum of order h2 in other subspace the spectrum of
order one. They again prove that the n-th eigenvalue of h
problem is in relative norm distanced by h from the n-th
eigenvalue of the limit problem. They also prove that the
eigenfunctions are at distance h from limit eigenfunction.



Important estimates-Korn type inequalities
By using Korn’s inequality and boundary condition we can show
that for u ∈ H1

χ(Q,C3) we have∥∥u1 − (c1 − iχ1c3x3)eχ(y)
∥∥

H1(Q)
. ‖sym∇u‖L2(Q),∥∥u2 − (c2 − iχ2c3x3)eχ(y)

)∥∥
H1(Q)

. ‖sym∇u‖L2(Q),∥∥u3 − c3eχ(y)
∥∥

H1(Q)
. ‖sym∇u‖L2(Q),

for some c1, c2, c3 ∈ C which satisfy

max
{
|c1|, |c2|

}
.

1
|χ|
‖sym∇u‖L2(Q),

|c3| .
1
|χ|2
‖sym∇u‖L2(Q).

Here eχ(y) = exp(iχ · y), y ∈ Q. The following is satisfied

χ 6= 0, sym∇u = 0 =⇒ u = 0,
χ = 0, sym∇u = 0 =⇒ u = Ax + b( with periodicity A = 0),

A ∈ C3×3
skew,b ∈ C3.



Important estimates-Korn type inequalities

We additionally assume “planar" material symmetries:

Aαβγ3 = 0, Aα3333 = 0 ∀α, β, γ ∈ {1,2}.

Under this assumption we have two invariant subspaces of the
elasticity operator:

1. horizontal displacements odd in x3 variable and vertical
displacement even in x3 variable;

2. horizontal displacement even in x3 variable and vertical
displacement odd in x3 variable.



Important estimates-Korn type inequalities
In the first subspace we have that the lowest eigenvalue is of
order (at least) |χ|4 and we have the estimates

∥∥u1 + iχ1c3x3eχ(y)
∥∥

H1(Q)
. ‖sym∇u‖L2(Q),∥∥u2 + iχ2c3x3eχ(y)

∥∥
H1(Q)

. ‖sym∇u‖L2(Q),∥∥u3 − c3eχ(y)
∥∥

H1(Q)
. ‖sym∇u‖L2(Q).

In the second subspace we have that the lowest eigenvalue is
of order (at least) |χ|2 and we have the estimates∥∥u1 − c1eχ(y)

∥∥
H1(Q)

. ‖sym∇u‖L2(Q),∥∥u2 − c2eχ(y)
∥∥

H1(Q)
. ‖sym∇u‖L2(Q),∥∥u3

∥∥
H1(Q)

. ‖sym∇u‖L2(Q).

These estimates can be interpreted as spectral gap estimates.



Towards asymptotics

In the first subspace we will scale the operator with 1
|χ|4 and

scale the horizontal forces with 1
|χ| . The equation becomes

1
|χ|4

ˆ
Q

A sym∇y ,x3(u1,u2,u3) : sym∇y ,x3(ϕ1, ϕ2, ϕ3)+

ˆ
Q

uαϕα +

ˆ
Q

u3ϕ3 =
1
|χ|

ˆ
Q

fαϕα +

ˆ
Q

f3ϕ3 ∀ϕ ∈ H1
χ(Q,C3).

We assume that fα is odd in x3 variable, while f3 is even. As a
consequence of material symmetries we have that the
dispacement satisfies the same conditions.



Towards asymptotics

In the second subspace we will scale the operator with 1
|χ|2 .

The equation becomes

1
|χ|2

ˆ
Q

A sym∇y ,x3(u1,u2,u3) : sym∇y ,x3(ϕ1, ϕ2, ϕ3)+

ˆ
Q

uαϕα +

ˆ
Q

u3ϕ3 =

ˆ
Q

fαϕα +

ˆ
Q

f3ϕ3 ∀ϕ ∈ H1
χ(Q,C3).

Here we assumed that fα is even in x3 variable, while f3 is odd.
As a consequence of material symmetries we have that the
displacement satisfies the same conditions.



Towards asymptotics

I Apriori estimates are telling us that there is at most
one-dimensional eigenspace in the first invariant subspace
and two-dimensional eigenspace in the second invariant
subspace where the order of eigenvalue is less than one.

I The approximate equation will tell us that we caught all
eigenvalues whose order is less than one.

I This will provide us more information on the spectrum than
the norm resolvent estimate (the norm resolvent estimate
by its nature does not provide good estimate for large
spectrum and small spectrum)

I Our estimate implies that if we scale the original operator
with εα, α > 0, then the approximate equation has
precision (wrt norm resolvent) εα/4 in the first subspace
and εα/2 in the second.



Towards asymptotics

I We will do all estimates depending on parameter χ (not on
ε). In the first subspace we will have the spectrum of order
|χ|4, in the second of order |χ|2 (for the original operator
|χ|4
ε2 , i.e., |χ|

2

ε2 ). Moreover the eigenfunctions in the first
invariant subspace have in-plane components of order |χ|,
in the second subspace the order of vertical component of
eigenfunction will be |χ|. Our approximate equation will
approximate the spectrum with precision |χ| in relative
norm and also the eigenfunctions in the first subspace with
relative precision |χ|. In the second subspace we will
approximate the eigenfunctions with precision |χ|. Better
precision would require different approximate equation.



Towards asymptotics

I Scaling of the forces is connected with the additional
precision we want to have on first two components in the
first subspace (they are of order |χ|, we obtain precision of
order |χ|2). This can be proved by Riesz representation
theorem.

I This natural scaling has the consequence that the
computations are more elegant than they would be with
scaling depending on ε! By scaling the operator we don’t
have anymore to divide the problem into the inner,
intermediate and upper region. This is natural since there
is no anymore unity. The only area where these estimates
do not provide any information is the region |χ| ∼ 1 (recall
the work of Allaire, Conca).



Apriori estimates

Apriori estimates in the first subspace:∥∥sym∇u
∥∥

L2(Q,C3×3)
. |χ|2‖f‖L2(Q,C3),

‖u1‖L2(Q,C) + ‖u2‖L2(Q,C) . |χ|‖f‖L2(Q,C3),

‖u3‖L2(Q,C) . ‖f‖L2(Q,C3).

The approximate equation will approximate the solution in
in-plane components with order |χ|2, while in vertical
component with order |χ|. This will be valid also under scaling
of in-plane forces with order 1

|χ| .



Apriori estimates

Apriori estimates in the second subspace:∥∥sym∇u
∥∥

L2(Q,C3×3)
. C|χ|‖f‖L2(Q,C3);

‖u1‖H1(Q,C) + ‖u2‖H1(Q,C) . ‖f‖L2(Q,C3),

‖u3‖H1(Q,C) . |χ|‖f‖L2(Q,C3).

If we take fα = 0, for α = 1,2 we obtain:∥∥sym∇u
∥∥

L2(Q,C3×3)
. |χ|2‖f3‖L2(Q,C),

‖u1‖H1(Q,C) + ‖u2‖H1(Q,C) . |χ|‖f3‖L2(Q,C),

‖u3‖H1(Q,C) . |χ|2‖f3‖L2(Q,C).

We will show that the approximate equation approximates the
original one (wrt scaled norm resolvent) with order |χ| and thus
we can neglect f3.



Approximate equation

The limit equation in the first subspace has the form

1
|χ|4

Ahom,1m3 d3+

ˆ
Q

(−iχ1x3m3,−iχ2x3m3,m3)> · (−iχ1x3d3,−iχ2x3d3,d3)>

=
1
|χ|

ˆ
Q

(
f1, f2

)> · eχ(−iχ1x3d3,−iχ2x3d3)>

+

ˆ
Q

f3 · eχd3, ∀d3 ∈ C.



Approximate equation

We define

Υ(χ,m3) := im3

(
χ2

1 χ1χ2

χ1χ2 χ2
2

)
;

(sym∇)∗A sym∇N(1)
m = (sym∇)∗A ix3Υ(χ,m3),

N(1)
m ∈ H1

#(Q,C3),

ˆ
Q

N(1)
m = 0;

Ahom,1m3 d3 :=

ˆ
Q

A
(
∇N(1)

m − ix3Υ(χ,m3)
)

:
(
−ix3Υ(χ,d3)

)
.

It can be shown that the lower order terms on the left hand side
can be neglected.



Approximate equation
The limit equation in the second subspace has the form

1
|χ|2

Ahom,2(m1,m2)> · (d1,d2)> + (m1,m2)> · (d1,d2)> =

ˆ
Q

(
f1, f2

)> · eχ(d1,d2)> ∀(d1,d2)> ∈ C2.

We define

Ξ(χ,m1,m2) := i

 χ1m1
1
2(χ1m2 + χ2m1)

1
2(χ1m2 + χ2m1) χ2m2

 ;

(sym∇)∗A sym∇N(2)
m = −(sym∇)∗AΞ(χ,m1,m2),

N(2)
m ∈ H1

#(Q,C3),

ˆ
Q

N(2)
m = 0;

Ahom,2(m1,m2)>·(d1,d2)> :=

ˆ
Q

A
(
∇N(2)

m +Ξ(χ,m1,m2)
)

: Ξ(χ,d1,d2).



Asymptotics in the second subspace

The following estimate is satisfied for the solution of the limit
equation ∣∣(m1,m2)

∣∣ . ∥∥(f1, f2)
∥∥

L2(Q,C2)
.

The asymptotic procedure starts with definition u2 ∈ H1
#(Q,C3)

(sym∇)∗A sym∇u2 = −(sym∇)∗AΞ(χ,m1,m2),

ˆ
Q
u2 = 0.

We infer that

‖u2‖H1(Q,C3) . |χ|
∥∥(f1, f2)

∥∥
L2(Q,C2)

.



Asymptotics in the second subspace

Next we define u3 ∈ H1
#(Q,C3) that satisfies

´
Q u3 = 0 and

(sym∇)∗A sym∇u3 = i
{
O∗A sym∇u2 − (sym∇)∗AOu2

+O∗AΞ(χ,m1,m2)
}

−|χ|2(m1,m2,0)> + |χ|2eχ(f1, f2,0)>.

Here

Oϕ :=


χ1ϕ1

1
2(χ2ϕ1 + χ1ϕ2) 1

2χ1ϕ3

1
2(χ2ϕ1 + χ1ϕ2) χ2ϕ2

1
2χ2ϕ3

1
2χ1ϕ3

1
2χ2ϕ3 0

 .



Asymptotics in the second subspace
The right-hand side of the definition eqution for u3 yields zero
when tested with constant vectors of the form (D1,D2,0)> as
the consequence of definition of u2. Furthermore, it also
vanishes when tested with vectors of the form (0,0,D3)>, as a
consequence of symmetry conditions. Thus the equation for u3
has the solution and we have the estimate:

‖u3‖H1(Q,C3) . |χ|2
∥∥(f1, f2)

∥∥
L2(Q,C3)

.

We stop with the asymptotics. We define the approximate
solution

U = (m1,m2,0)> + u2 + u3,

which clearly satisfies

(sym∇+iO)∗A(sym∇+iO)U+|χ|2U = |χ|2eχ
(
f1, f2,0

)>
+O(|χ|3),

where the remainder is estimated:∥∥O(|χ|3)
∥∥

H−1
# (Q,C3)

. |χ|3
∥∥(f1, f2)

∥∥
L2(Q,C2)

.



Asymptotics in the second subspace

It follows that the error z := (u1,u2,u3)− U satisfies

(sym∇+ iO)∗A(sym∇+ iO)z + |χ|2z = O(|χ|3).

It is easy to see that∥∥A(sym∇+iO)z
∥∥2

L2(Q,C3×3)
& ‖ sym∇z‖2L2(Q,C3×3)−|χ|‖z‖

2
L2(Q,C3),

for some 0 < c1 < 1 and thus, for sufficiently small ε (recall
|χ| � 1 ), one has∥∥A(sym∇+ iO)z

∥∥2
L2(Q,C3×3)

+ |χ|2‖z‖2L2(Q,C3) &

|χ|2
(
‖ sym∇z‖2L2(Q,C3×3) + ‖z‖2L2(Q,C3)

)
.

By testing the equation with z we conclude

‖z‖H1(Q,C3) . |χ|‖(f1, f2)‖L2(Q,C2).



Asymptotics in the second subspace

From the estimates we have on u2, u3 we conclude for the
solution of the scaled equation

‖uα −mαeχ‖H1(Q,C) . |χ|‖(f1, f2)‖L2(Q,C2), α = 1,2,

‖u3‖H1(Q,C) . |χ|
∥∥(f1, f2)

∥∥
L2(Q,C2)

.



Further remarks on asymptotics

I In the first invariant subspace we have to go further into
the expansion to obtain the satisfied precision. The
obtained estimates are (recall that the forces are scaled)

‖uα + iχαm3x3eχ‖H1(Q,C) . |χ|2|‖f‖L2(Q,C3), α = 1,2,

‖u3 −m3eχ‖H1(Q,C) . |χ|
∥∥f‖L2(Q,C3).

I If we do not assume the planar symmetries we can easily
do the computations when we scale the operator with ε2

(usual norm resolvent estimate). However, by now, I don’t
know how to do the computations with the scaling ε4;

I It can be easily seen that the approximate equation has the
spectrum of order one. By standard argument with min
max principle and Rayleigh quotient we can prove that with
the approximate equation we approximate the spectrum
with precision |χ|. For approximating the spectrum we don’t
need to scale the forces in the first invariant subspace.



Further remarks on asymptotics

I Scaling of the forces is used to obtain the precision of order
|χ|2 in the in-plane components of eigenfunctions in the
first invariant subspace (they themselves have the order
|χ|). The argument goes by Riesz representation theorem.

I Although the approximate equation in the first subspace
does not have the resolvent form in the strict sense, it
resembles resolvent form and can be used in estimations
(for min max principle and Riesz representation formula).

I Approximate equation does not contain the relevant
approximation only for |χ| ∼ 1, since the error is of the
same order as the spectrum. Moreover, in order to analyze
the spectrum of order one, one would have to include this
upper region as well as more eigenvalues in the inner
region. Usual norm resolvent approximation neglects the
area where |χ| ∼

√
ε. Moreover, for spectrum of order less

than ε it does not provide satisfactory precision.



Further remarks on asymptotics

I Considering wave propagation, interest for approximating
the scaled operator (scaling with εα) in the norm resolvent
sense arises if one would like to approximate waves with
certain prescribed level of energy (again scaled with the
power of ε).



Limit equation

Bending equation (first subspace):

1
12

ˆ
R2
L∇2v : ∇2ψ+

ε2

12

ˆ
R2
∇v · ∇ψ +

ˆ
R2

vψ =

−
ˆ

R2

(〈
x3f1

〉
,
〈
x3f2

〉)>
· ∇ψ +

ˆ
R2
〈f3〉ψ ∀ψ ∈ H2(R2,R),

LM : M := inf
ψ∈H1

#(Q,R3)

ˆ
Q

A
(
ι(M) + sym∇ψ

)
:
(
ι(M) + sym∇ψ

)
,

M ∈ R2×2
sym , ι : R2×2

sym → R3×3
sym , natural inclusion.

〈f 〉 :=

ˆ
I
f dx3.

The displacement is approximated with (−εx3∂1v ,−εx3∂2v , v).



Limit equation

Stretching equation (second subspace):
ˆ

R2
L sym∇w : sym∇ψ +

ˆ
R2

w · ψ =

ˆ
R2

(〈
f1
〉
,
〈
f2
〉)>
· ψ,

∀ψ ∈ H1(R2,R2).

The displacement is approximated with (w1,w2,0).



Thank you for your attention!


