AVERAGING AND INITIAL LAYER ANALYSIS
 IN PASSIVE TRANSPORT

Harsha Hutridurga

Imperial College London

19 June 2019 - Recent Advances in Homogenisation theory
\& G.I. TAYLOR posed an interesting question.
\& Take a tube filled with fluid.
\& Study spreading of dissolved solutes inside the tube.
\& Interplay between molecular diffusion and advection

$$
\partial_{t} c+\mathbf{b} \cdot \nabla c-d \Delta c=0
$$

\& Scenarios $d \equiv 0$ or $\mathbf{b} \equiv$ constant do not mix well.
\& Shearing advective field:
Poiseuille flow in a tube.
\& Empirical formula for

Effective diffusion.
[Ref.] G.I.TAYLOR, Proc. Roy. Soc. Lond. A Math., Vol 219 (1953).
[Ref.] G.K.BATCHELOR, The life and legacy of G.I.Taylor, (1996).

MOTIVATION

\& Quantity of interest: certain CONCENTRATION FIELD.
\& Evolving under the influence of

- advection by an incompressible field.
- molecular diffusion.
\& Physical quantity immersed in a fluid flow
- temperature (heat).
- concentration of some solute.
\& Chlorophyll moved around in ocean.
\& Heat evolving on the surface of the ocean.
[Ref.] EARTH ObSERVATORY WEbPage of nasa for certain global maps

> https://earthobservatory.nasa.gov
[Media.] TEMPERATURE AND CHLOROPHYLL MAPS (2002-2016)

INTRICATE CONNECTIONS

\& Other scientific disciplines such as

- Geophysics: oceanography
- Engineering: chemical engineering
- Biology: motor proteins
of Particular applications:
- weak heat fluctuations in fluids
- dyes used to visualising flow patterns
- pollutants dispersing in the environment
- gas exchange in the lungs
- blood circulation
[Ref.] A.MAJDA, P.KRAMER, Phy. Rep. (1999).
Interesting series of lectures on youtube
[Ref.] JEAN-LUC THIFEAULT, Stirring and Mixing, Geophysical Phenomena, ICTS (2016).

ADVECTION-DIFFUSION EQUATION

Initial-boundary value problem for the scalar unknown $u^{\varepsilon}(t, x)$

$$
\begin{aligned}
\partial_{t} u^{\varepsilon}+\frac{1}{\varepsilon} \mathbf{b} \cdot \nabla u^{\varepsilon}-\Delta u^{\varepsilon} & =0 & & \text { in } \mathbb{R}_{+} \times \Omega, \\
u^{\varepsilon}(0, x) & =u^{\text {in }}(x) & & \text { in } \Omega, \\
\nabla u^{\varepsilon} \cdot \mathbf{n}(x) & =0 & & \text { on } \mathbb{R}_{+} \times \partial \Omega .
\end{aligned}
$$

\& $\varepsilon>0$ is a parameter (to regulate strength of advective field).
\& Molecular diffusion weak compared to the strength of advection.

PASSIVE SCALAR

\& Advective field $\mathbf{b}(x)$ is a datum.
on Neglect buoyancy: no feedback.

Advective field $\mathbf{b}(x): \Omega \rightarrow \mathbb{R}^{d}$ is such that
\& It is prescribed - We are not solving fundamental fluid equation.
\& It is incompressible (divergence-free, solenoidal), i.e.,

$$
\nabla \cdot \mathbf{b}(x)=0 \quad \text { for a.e. } x \in \Omega
$$

\& It has zero normal flux at the boundary, i.e.,

$$
\mathbf{b}(x) \cdot \mathbf{n}(x)=0 \quad \text { for a.e. } x \in \partial \Omega .
$$

\& It is as smooth as the computations demand.

ADDITIONAL COMMENT

$\%$ In case of a feedback: coupled system for $u^{\varepsilon}(t, x)$ and $\mathbf{b}(x)$.
\& RAYLEIGH-BÉNARD convection system - more complicated.
\& Consider two-dimensional incompressible Navier-Stokes equations

$$
\begin{aligned}
\partial_{t} \mathbf{u}+(\mathbf{u} \cdot \nabla) \mathbf{u}+\nabla p & =\varepsilon \Delta \mathbf{u} \\
\nabla \cdot \mathbf{u} & =0
\end{aligned}
$$

\& Introduce the vorticity $\omega:=\nabla \times \mathbf{u}$ - satisfies the coupled system

$$
\begin{aligned}
\partial_{t} \omega+\mathbf{u} \cdot \nabla \omega & =\varepsilon \Delta \omega \\
\mathbf{u} & =\nabla^{\perp} \Psi=\left(-\partial_{x_{2}} \Psi, \partial_{x_{1}} \Psi\right) \\
-\Delta \Psi & =\omega
\end{aligned}
$$

\& Long-time scaling yields

$$
\partial_{t} \omega+\frac{1}{\varepsilon} \mathbf{u} \cdot \nabla \omega=\Delta \omega
$$

\& This is a long term goal...

INTERESTING QUESTIONS

$$
\partial_{t} u^{\varepsilon}+\frac{1}{\varepsilon} \mathbf{b} \cdot \nabla u^{\varepsilon}-\Delta u^{\varepsilon}=0
$$

\& Relaxation to equilibrium

- In the evolution for $u^{\varepsilon}(t, x)$ how long does it take to equilibrate?
- If we wait long enough, will we reach an uniform temperature?
- Is the rate of convergence uniform in ε ?
- Are there special advective fields which result in quicker equilibration?
\& Strong advection limit
- Does there exist a limit point for the sequence $\left\{u^{\varepsilon}(t, x)\right\}$?
- If $\lim _{\varepsilon \rightarrow 0} u^{\varepsilon}=\bar{u}$, how can we characterise the limit \bar{u} ?
- Is there a rate of convergence in terms of ε ?
- What is the interplay with the rate of convergence and the chosen advective field?
[Ref.] T.HOLDING, H.H, J.RAUCH, SIAm J. Math. Anal., Vol 49, No 1, pp. 222-271 (2017). [Ref.] T.HOLDING, H.H, J.RAUCH, in preparation, (2018).

Access to both the arXiv and published versions on my webpage:
http://hutridurga.wordpress.com

SCIENTIFIC COLLABORATORS

Joint work with T. Holding (Imperial), J. Rauch (Michigan)

ORTHOGONAL DECOMPOSITION

\& Consider the null space and the range space of $\mathbf{b} \cdot \nabla$

$$
\begin{aligned}
& \mathcal{N}_{\mathbf{b}}:=\left\{v \in \mathrm{~L}^{2}(\Omega) \text { s.t. } \operatorname{div}(\mathbf{b} v)=0 \text { in the sense of distributions }\right\} . \\
& \mathcal{W}_{\mathbf{b}}:=\left\{\mathbf{b} \cdot \nabla v \text { for } v \in \mathrm{H}^{1}(\Omega)\right\} \subset \mathrm{L}^{2}(\Omega) .
\end{aligned}
$$

\& Hilbert's theorem yields orthogonal decomposition

$$
\mathrm{L}^{2}(\Omega)=\mathcal{N}_{\mathbf{b}} \oplus \overline{\mathcal{W}_{\mathbf{b}}}
$$

i.e., for any $v \in \mathrm{~L}^{2}(\Omega)$, there exists a unique decomposition

$$
v=v_{n}+v_{r}
$$

such that $v_{n} \in \mathcal{N}_{\mathbf{b}}$ and $v_{r} \in \mathcal{N}_{\mathbf{b}}^{\perp}=\overline{\mathcal{W}_{\mathbf{b}}}$
\& Projection on to $\mathcal{N}_{\mathbf{b}}$ denoted $\mathcal{P}: \mathrm{L}^{2}(\Omega) \mapsto \mathcal{N}_{\mathbf{b}}$

SOME WELL-KNOWN FIELDS

\& A rotation in two dimensions

$$
\mathbf{b}\left(x_{1}, x_{2}\right)=\binom{-x_{2}}{x_{1}}
$$

a $x_{1}^{2}+x_{2}^{2} \in \mathcal{N}_{\mathbf{b}}$

\& A two dimensional cellular flow

$$
\mathbf{b}\left(x_{1}, x_{2}\right)=\binom{-\sin \left(x_{1}\right) \cos \left(x_{2}\right)}{\cos \left(x_{1}\right) \sin \left(x_{2}\right)}
$$

\& $\sin \left(x_{1}\right) \sin \left(x_{2}\right) \in \mathcal{N}_{\mathbf{b}}$
\& For any $v \in \mathrm{~L}^{2}(\Omega)$, the projection $\mathcal{P} v$ can be computed as

$$
\|v-\mathcal{P} v\|_{\mathrm{L}^{2}(\Omega)}=\min _{g \in \mathcal{N}_{\mathbf{b}}}\|v-g\|_{\mathrm{L}^{2}(\Omega)}
$$

\& More useful way to interpret the projection map \mathcal{P} is due to

von Neumann's ergodic theorem:

For any $v \in \mathrm{~L}^{2}(\Omega)$,

$$
\mathcal{P} v(x):=\lim _{\ell \rightarrow \infty} \frac{1}{2 \ell} \int_{-\ell}^{\ell} v\left(\Phi_{\tau}(x)\right) \mathrm{d} \tau
$$

with the flow $\Phi_{\tau}(x): \mathbb{R} \times \Omega \rightarrow \Omega$ defined as

$$
\left\{\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} \tau} \Phi_{\tau}(x) & =\mathbf{b}\left(\Phi_{\tau}(x)\right) \\
\Phi_{0}(x) & =x
\end{aligned}\right.
$$

Theorem (HOLDING, H, RAUCH (2018))
Let $u^{\varepsilon}(t, x)$ be the solution to the initial-boundary value problem. Then

$$
u^{\varepsilon} \rightharpoonup \bar{u} \quad \text { weakly in } \mathrm{L}^{2}
$$

with $\bar{u}(t, x)$ being the unique solution to

$$
\begin{aligned}
\partial_{t} \bar{u}-\Delta \bar{u} & =g \in \mathcal{N}_{\mathbf{b}}^{\perp} \\
\bar{u}(t, \cdot) & \in \mathcal{N}_{\mathbf{b}} \\
\bar{u}(0, \cdot) & =\mathcal{P} u^{\text {in }}(\cdot) \\
\nabla \bar{u}(t, x) \cdot \mathbf{n}(x) & =0 \quad \text { on } \mathbb{R}_{+} \times \partial \Omega .
\end{aligned}
$$

\& The condition $\bar{u}(t, \cdot) \in \mathcal{N}_{\mathbf{b}}$ is treated as a constraint.
\& The source $g(t, \cdot) \in \mathcal{N}_{\mathbf{b}}^{\perp}$ is the associated Lagrange multiplier.
\& The initial datum has got projected on to the null space \mathcal{N}_{b}.

$$
\partial_{t} u^{\varepsilon}+\frac{1}{\varepsilon} \mathbf{b} \cdot \nabla u^{\varepsilon}-\Delta u^{\varepsilon}=0
$$

o. By L^{2}-weak convergence, we mean that for any $\psi(t, x) \in \mathrm{L}^{2}$,

$$
\lim _{\varepsilon \rightarrow 0} \iint u^{\varepsilon}(t, x) \psi(t, x) \mathrm{d} x \mathrm{~d} t=\iint \bar{u}(t, x) \psi(t, x) \mathrm{d} x \mathrm{~d} t
$$

\& For a weak convergence, we cannot give a rate of convergence
\& Limit evolution with the constraint should be interpreted as solving heat equation on the subspace $\mathcal{N}_{\mathbf{b}}$.
\& Can we improve it to strong convergence (then we explore the rate)

$$
\lim _{\varepsilon \rightarrow 0}\left\|u^{\varepsilon}-\bar{u}\right\|_{L^{2}}=0
$$

\& Are there advective fields $\mathbf{b}(x)$ which result in strong convergence?
\% One possible obstacle for such a result is

$$
u^{\varepsilon}(0, x)=u^{\mathrm{in}}(x) ; \quad \bar{u}(0, x)=\mathcal{P} u^{\mathrm{in}}(x)
$$

STRATEGY

\& WORK IN A MOVING FRAME OF REFERENCE

- Rather than studying $u^{\varepsilon}(t, x)$ in a fixed frame,
- we study u^{ε} taken along a moving frame.
- Dynamics of the moving frame dictated by the field $\mathbf{b}(x)$.

MEASURE PRESERVING FLOW

\& Consider the flow $\Phi_{\tau}(x): \mathbb{R} \times \Omega \rightarrow \Omega$ defined as

$$
\left\{\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} \tau} \Phi_{\tau}(x) & =\mathbf{b}\left(\Phi_{\tau}(x)\right) \\
\Phi_{0}(x) & =x
\end{aligned}\right.
$$

\& Rather than studying $u^{\varepsilon}(t, x)$ we study the family

$$
u^{\varepsilon}\left(t, \Phi_{t / \varepsilon}(x)\right)
$$

\& Flow is evaluated at $\frac{t}{\varepsilon}$
\& We introduce a fast time variable $\tau:=\frac{t}{\varepsilon}$

$$
t=\mathcal{O}(\varepsilon) \Longrightarrow \tau=\mathcal{O}(1)
$$

\& For any $\tau \in \mathbb{R}$, the map $x \mapsto \Phi_{\tau}(x)$ defines a change-of-variable
\& Associated Jacobian matrix

$$
J(\tau, x)=\left[\begin{array}{ccc}
\frac{\partial \Phi_{\tau}^{1}}{\partial x_{1}} & \cdots & \frac{\partial \Phi_{\tau}^{1}}{\partial x_{d}} \\
\vdots & & \vdots \\
\frac{\partial \Phi_{\tau}^{d}}{\partial x_{1}} & \cdots & \frac{\partial \Phi_{\tau}^{d}}{\partial x_{d}}
\end{array}\right]=\left(\frac{\partial \Phi_{\tau}^{i}}{\partial x_{j}}\right)_{i, j=1}^{d}
$$

$\& \mathbf{b}(x)$ incompressible \Longrightarrow flow $\Phi_{\tau}(x)$ is volume preserving,

$$
\text { i.e., } \operatorname{det}(J(\tau, x))=1 \quad \text { for all } \tau \in \mathbb{R}
$$

CONVERGENCE ALONG FLOWS

Theorem (HOLDING, H, RAUCH (2017))

Let $u^{\varepsilon}(t, x)$ be the solution to the initial-boundary value problem. Suppose Jacobian matrix $J(\cdot, x) \in \mathcal{A}$, an algebra with mean value. Then for each $t>0$,

$$
\lim _{\varepsilon \rightarrow 0}\left\|u^{\varepsilon}(t, \cdot)-u_{0}\left(t, \Phi_{-t / \varepsilon}(\cdot)\right)\right\|_{\mathrm{L}^{2}(\Omega)}=0
$$

where $u_{0}(t, x)$ solves a diffusion equation

$$
\partial_{t} u_{0}=\nabla_{X} \cdot\left(\mathfrak{D}(x) \nabla_{X} u_{0}\right) ; \quad u_{0}(0, x)=u^{\text {in }}(x)
$$

with the diffusion matrix given by

$$
\mathfrak{D}(x)=\lim _{\ell \rightarrow \infty} \frac{1}{2 \ell} \int_{-\ell}^{+\ell} J(\tau, x)^{\top} J(\tau, x) \mathrm{d} \tau
$$

\& Computing the time derivative

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}\left[u^{\varepsilon}\left(t, \Phi_{t / \varepsilon}(x)\right)\right] & =\partial_{t} u^{\varepsilon}\left(t, \Phi_{t / \varepsilon}(x)\right)+\frac{1}{\varepsilon} \frac{\mathrm{~d}}{\mathrm{~d} t} \Phi_{t / \varepsilon}(x) \cdot \nabla_{X} u^{\varepsilon}\left(t, \Phi_{t / \varepsilon}(x)\right) \\
& =\partial_{t} u^{\varepsilon}\left(t, \Phi_{t / \varepsilon}(x)\right)+\frac{1}{\varepsilon} \mathbf{b}\left(\Phi_{t / \varepsilon}(x)\right) \cdot \nabla_{X} u^{\varepsilon}\left(t, \Phi_{t / \varepsilon}(x)\right)
\end{aligned}
$$

$\%$ RHS is the advection term taken along the flow $\Phi_{t / \varepsilon}(x)$.
of x denotes the Lagrangian coordinate.
\& Computing the spatial derivative

$$
\nabla\left[u^{\varepsilon}\left(t, \Phi_{t / \varepsilon}(x)\right)\right]={ }^{\top} J\left(\frac{t}{\varepsilon}, x\right) \nabla_{X} u^{\varepsilon}\left(t, \Phi_{t / \varepsilon}(x)\right)
$$

where ${ }^{\top}$. denotes transpose.
\& Note the dependance of Jacobian on the fast time variable.

RECAST THE ADVECTION-DIFFUSION EQUATION ALONG THE FLOW

\& Need to compute the Laplacian term along the flow $\Phi_{t / \varepsilon}(x)$.
\& Consider the associated energy

$$
\int_{\Omega}\left\langle\nabla u^{\varepsilon}(t, x), \nabla u^{\varepsilon}(t, x)\right\rangle \mathrm{d} x
$$

\& Perform the change of variables $x \mapsto \Phi_{t / \varepsilon}(x)$ inside the integral

$$
\int_{\Omega}\left\langle{ }^{\top} J\left(\frac{t}{\varepsilon}, x\right) \nabla_{X} u^{\varepsilon}\left(t, \Phi_{t / \varepsilon}(x)\right),{ }^{\top} J\left(\frac{t}{\varepsilon}, x\right) \nabla_{X} u^{\varepsilon}\left(t, \Phi_{t / \varepsilon}(x)\right)\right\rangle \underbrace{\frac{\mathrm{d} X}{|\operatorname{det}(J)|}}_{=1}
$$

\& Hence the Laplacian along the flow $\Phi_{t / \varepsilon}(x)$ becomes

$$
\nabla_{X} \cdot\left(J\left(\frac{t}{\varepsilon}, x\right){ }^{\top} J\left(\frac{t}{\varepsilon}, x\right) \nabla_{X} u^{\varepsilon}\left(t, \Phi_{t / \varepsilon}(x)\right)\right)
$$

EQUIVALENCE

\& We have seen that $u^{\varepsilon}(t, x)$ solves

$$
\partial_{t} u^{\varepsilon}+\frac{1}{\varepsilon} \mathbf{b} \cdot \nabla u^{\varepsilon}-\Delta u^{\varepsilon}=0
$$

if and only if $u^{\varepsilon}\left(t, \Phi_{t / \varepsilon}(x)\right)$ solves

$$
\partial_{t} u^{\varepsilon}-\nabla_{X} \cdot\left(J\left(\frac{t}{\varepsilon}, x\right){ }^{\top} J\left(\frac{t}{\varepsilon}, x\right) \nabla_{X} u^{\varepsilon}\right)=0
$$

\& Pass to the limit as $\varepsilon \rightarrow 0$ in the weak formulation.
\& $\nabla_{X} u^{\varepsilon}$ weakly converges in L^{2}
\& If the family $J^{\top} J\left(\frac{t}{\varepsilon}, x\right)$ strongly converges, we are good because

$$
f^{\varepsilon} \rightharpoonup f_{0}, \quad h^{\varepsilon} \rightarrow h_{0} \Longrightarrow f^{\varepsilon} h^{\varepsilon} \rightarrow f_{0} h_{0} \quad \text { in } \mathcal{D}^{\prime}
$$

ILLUSTRATION OF ESSENTIAL DIFFICULTY

\& Take $f_{n}(t)=2+\sin (2 n \pi t)$ over $[-\pi, \pi]$ with n being a parameter.

\& f_{n} cannot converge in almost any point.

MEAN VALUE (DILATION MAP)

Lemma

Suppose $f \in \mathrm{~L}^{\infty}(\mathbb{R})$. Define the dilated sequence

$$
\begin{gathered}
f^{\varepsilon}(t):=f\left(\frac{t}{\varepsilon}\right) . \\
\text { If } \quad f^{\varepsilon} \rightharpoonup M(f) \quad \text { weakly } * \text { in } \mathrm{L}^{\infty}(\mathbb{R}) \quad \text { as } \varepsilon \rightarrow 0
\end{gathered}
$$

where $M(f)$ is a finite constant. Then, the limit is characterised as

$$
M(f)=\lim _{\ell \rightarrow \infty} \frac{1}{2 \ell} \int_{-\ell}^{\ell} f(\tau) \mathrm{d} \tau
$$

\& $\operatorname{By} h^{\varepsilon} \rightharpoonup h_{0}$ weakly $*$ in $\mathrm{L}^{\infty}(\mathbb{R})$, we mean

$$
\lim _{\varepsilon \rightarrow 0} \int_{\mathbb{R}} h^{\varepsilon}(t) \psi(t) \mathrm{d} t=\int_{\mathbb{R}} h_{0}(t) \psi(t) \mathrm{d} t \quad \forall \psi \in \mathrm{~L}^{1}
$$

PRODUCT OF TWO WEAKLY CONVERGING SEQUENCES

$$
\sin \left(\frac{2 \pi t}{\varepsilon}\right) \rightharpoonup 0 ; \quad \text { But } \quad \int_{0}^{1} \sin ^{2}\left(\frac{2 \pi t}{\varepsilon}\right) \mathrm{d} t \rightarrow \frac{1}{2}
$$

QUINTESSENTIAL TOUGH QUESTION IN ANALYSIS

\& Passing to the limit in product of weakly converging sequences
\& This is the question of interest in

Homogenization theory of differential equations.

\& A typical problem in homogenization is to study

$$
\begin{aligned}
v^{\varepsilon}(x) & \in \mathrm{H}_{0}^{1}(\Omega) \\
-\nabla \cdot\left(\mathfrak{a}\left(\frac{x}{\varepsilon}\right) \nabla v^{\varepsilon}\right) & =g
\end{aligned}
$$

in the $\varepsilon \ll 1$ regime.
\& Usually we make some structural assumption on the coefficient \mathfrak{a}
\& Homogenization motivates some structural assumption on $J(\cdot, x)$

CHOICE OF SPACE FOR JACOBIAN MATRICES
Notation: $\mathcal{B}(\mathbb{R})$ - space of bounded continuous functions.
Definition (Algebra with mean value)
\mathcal{A} be a Banach subalgebra of $\mathcal{B}(\mathbb{R})$ with following properties:
\& \mathcal{A} contains the constants.
\& \mathcal{A} is translation invariant, i.e. $f(\cdot-a) \in \mathcal{A}$ whenever $f \in \mathcal{A}$.
\& Any $f \in \mathcal{A}$ possesses a mean value in the following sense

$$
f\left(\frac{\dot{\square}}{\varepsilon}\right) \rightharpoonup M(f) \quad \text { in } \mathrm{L}^{\infty}(\mathbb{R})-\text { weak }^{*} \text { as } \varepsilon \rightarrow 0
$$

We have already seen that

$$
M(f)=\lim _{\ell \rightarrow \infty} \frac{1}{2 \ell} \int_{-\ell}^{\ell} f(\tau) \mathrm{d} \tau
$$

[Ref.] V.V.JIKOV, E.V.KRIVENKO, Matem. Zametki (1983).
[Ref.] V.V.JIKOV, S.M.KOZLOV, O.A.OLEINIK, Springer-Verlag (1994).

Example (Periodic functions)

$\mathcal{A}=\mathcal{C}_{\text {per }}$ be space of continuous functions periodic with period 1.

$$
M(u)=\int_{0}^{1} u(\tau) \mathrm{d} \tau
$$

Example (Functions that converge at infinity)
\mathcal{A} be space of continuous functions that converge to a limit at infinity

$$
M(u)=\lim _{|\tau| \rightarrow \infty} u(\tau)
$$

Example (Almost-periodic functions)

\& $T(\mathbb{R})$ be the set of all trigonometric polynomials, i.e. all $u(t)$ that are finite linear combinations of functions in the set

$$
\{\cos (k t), \sin (k t): k \in \mathbb{R}\} .
$$

The space of almost-periodic functions in the sense of Bohr is the closure of $\mathrm{T}(\mathbb{R})$ in the supremum norm,
i.e., given a $\delta>0$ and an almost-periodic function $u(t)$, there exists a $g(t) \in \mathrm{T}(R)$ s.t.

$$
\|u(\cdot)-g(\cdot)\|_{\mathrm{L}^{\infty}}<\delta .
$$

$$
\sin (2 \pi t)+\sin (2 \sqrt{2} \pi t)
$$

ASYMPTOTIC ANALYSIS STRATEGY

\& Fix an arbitrary algebra w.m.v. \mathcal{A}.
\& Take $\mathbf{b}(x)$ such that Jacobian matrix $J(\cdot, x) \in \mathcal{A}$, i.e., in particular

$$
\sup _{\tau \in \mathbb{R}}|J(\tau, x)|<\infty
$$

A NEW NOTION OF WEAK CONVERGENCE

Definition (Σ-convergence along flow(HHR-2017))

A family $\left\{u^{\varepsilon}\right\} \subset \mathrm{L}^{2}((0, \ell) \times \Omega)$ is said to Σ-converge along the flow Φ_{τ} to a limit $u_{0}(t, x, s) \in \mathrm{L}^{2}((0, \ell) \times \Omega \times \Delta(\mathcal{A}))$ if, for any smooth test function $\psi(t, x, \cdot) \in \mathcal{A}$, we have

$$
\begin{aligned}
\lim _{\varepsilon \rightarrow 0} \iint_{(0, \ell) \times \Omega} u^{\varepsilon}(t, x) \psi & \left(t, \Phi_{-t / \varepsilon}(x), \frac{t}{\varepsilon}\right) \mathrm{d} x \mathrm{~d} t \\
& =\iiint_{(0, \ell) \times \Omega \times \Delta(\mathcal{A})} u_{0}(t, x, s) \widehat{\psi}(t, x, s) \mathrm{d} \beta(s) \mathrm{d} x \mathrm{~d} t
\end{aligned}
$$

Example (Constant drift)

$$
\mathbf{b}(x)=\overline{\mathbf{b}} \in \mathbb{R}^{d} .
$$

Jacobian $J(\cdot)$ identity for all times.
Example (Asymptotically constant drift)

$$
\mathbf{b}(x)= \begin{cases}\mathbf{b}^{*} & \text { when } \quad x_{1}<-a \\ \mathbf{c}(x) & \text { when } \quad x_{1} \in[-a, a] \\ \mathbf{b}^{* *} & \text { when } \quad x_{1}>a,\end{cases}
$$

\& $a>0, \mathbf{e}_{1} \cdot \mathbf{b}^{*}, \mathbf{e}_{1} \cdot \mathbf{b}^{* *}>0$
\& $\mathbf{c}(x)$ chosen to make \mathbf{b} continuously differentiable.
\& Any integral curve spends only finite time T in $\left\{x_{1} \in[-a, a]\right\}$.

Example (Euclidean motions)

$$
\mathbf{b}(x)=\mathbf{A} x+\overline{\mathbf{b}} \quad \text { with } \mathbf{A}=-{ }^{\top} \mathbf{A} \quad \text { and } \quad \overline{\mathbf{b}} \in \mathbb{R}^{d} .
$$

\& Associated flow

$$
\frac{\mathrm{d}}{\mathrm{~d} \tau} \Phi_{\tau}(x)=\mathbf{A} \Phi_{\tau}(x)+\overline{\mathbf{b}} ; \quad \Phi_{0}(x)=x
$$

\& Jacobian $J(\cdot, x)$ is an orthogonal matrix.
\& Jacobian matrix has no growth in τ.

ROTATION INSIDE A BALL

Example

Let $\Omega \subset \mathbb{R}^{2}$ and $\Omega:=B(0 ; 1)$. Advective field is a rigid rotation

$$
\mathbf{b}\left(x_{1}, x_{2}\right)=\binom{-x_{2}}{x_{1}}
$$

\& Associated flow

$$
\begin{aligned}
& \Phi_{\tau}^{1}\left(x_{1}, x_{2}\right)=-x_{2} \sin \tau+x_{1} \cos \tau \\
& \Phi_{\tau}^{2}\left(x_{1}, x_{2}\right)=x_{1} \sin \tau+x_{2} \cos \tau
\end{aligned}
$$

\& Jacobian matrix

$$
J\left(\tau, x_{1}, x_{2}\right)=\left[\begin{array}{cc}
\cos \tau & -\sin \tau \\
\sin \tau & \cos \tau
\end{array}\right]
$$

\& algebra w.m.v. $\mathcal{A}=\mathcal{C}_{\text {per }}$.
\& Note that $J^{\top} J=\mathrm{Id}$.
\& Hence diffusion $\mathfrak{D}=\mathrm{Id}$.
\& For any incompressible field $\mathbf{b}(x)$, family $u^{\varepsilon}(t, x)$ converges weakly

$$
\lim _{\varepsilon \rightarrow 0} \iint_{(0, \ell) \times \Omega} u^{\varepsilon}(t, x) \psi(t, x) \mathrm{d} x \mathrm{~d} t=\iint_{(0, \ell) \times \Omega} \bar{u}(t, x) \psi(t, x) \mathrm{d} x \mathrm{~d} t \quad \forall \psi \in \mathrm{~L}^{2}
$$

with \bar{u} solves an evolution equation with constraint $\bar{u}(t, \cdot) \in \mathcal{N}_{\mathbf{b}}$
\& For any field $\mathbf{b}(x)$ such that $J(\cdot, x) \in \mathcal{A}$, a certain algebra w.m.v.
Then, for any $t \in(0, \ell)$ we have

$$
\lim _{\varepsilon \rightarrow 0}\left\|w^{\varepsilon}(t, x)-u_{0}(t, x)\right\|_{L^{2}(\Omega)}=0
$$

where $w^{\varepsilon}(t, x):=u^{\varepsilon}\left(t, \Phi_{t / \varepsilon}(x)\right)$ and
u_{0} solves a diffusion equation with diffusivity \mathfrak{D}.
\& There is no contradiction.
The operative phrase being moving frame.
\& Two dimensional shear flow

$$
\mathbf{b}(x)=\binom{a\left(x_{2}\right)}{0}
$$

\& Measure preserving flow

$$
\Phi_{\tau}\left(x_{1}, x_{2}\right)=\binom{x_{1}+a\left(x_{2}\right) \tau}{x_{2}}
$$

\& Jacobian matrix

$$
J\left(\tau, x_{1}, x_{2}\right)=\left[\begin{array}{cc}
1 & a^{\prime}\left(x_{2}\right) \tau \\
0 & 1
\end{array}\right]
$$

\& Not uniformly bounded in τ main difficulty: $M(J) \nless \infty$.
\& Lagrangian stretching.
\& Compute $J(\tau, x)^{\top} J(\tau, x)$

$$
\begin{aligned}
& =\left[\begin{array}{cc}
1 & a^{\prime}\left(x_{2}\right) \tau \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
a^{\prime}\left(x_{2}\right) \tau & 1
\end{array}\right] \\
& =\left[\begin{array}{cc}
1+\left|a^{\prime}\left(x_{2}\right)\right|^{2} \tau^{2} & a^{\prime}\left(x_{2}\right) \tau \\
a^{\prime}\left(x_{2}\right) \tau & 1
\end{array}\right]
\end{aligned}
$$

STRATEGY TO HANDLE GROWING JACOBIANS

\%. Find a weight function $\omega(\tau)$ such that

$$
\omega^{2}(\tau) J(\tau, x)^{\top} J(\tau, x) \quad \text { has a mean value. }
$$

क. Take $\omega(\tau)=\left(1+\tau^{2}\right)^{-\frac{1}{2}}$, then

$$
\omega^{2}(\tau) J(\tau, x)^{\top} J(\tau, x)=\left[\begin{array}{cc}
\frac{1+\left|a^{\prime}\left(x_{2}\right)\right|^{2} \tau^{2}}{1+\tau^{2}} & \frac{a^{\prime}\left(x_{2}\right) \tau}{1+\tau^{2}} \\
\frac{a^{\prime}\left(x_{2}\right) \tau}{1+\tau^{2}} & \frac{1}{1+\tau^{2}}
\end{array}\right]
$$

\% Mean value does exist

$$
\lim _{\ell \rightarrow \infty} \frac{1}{2 \ell} \int_{-\ell}^{\ell} \omega^{2}(\tau) J(\tau, x)^{\top} J(\tau, x) \mathrm{d} \tau=\left[\begin{array}{cc}
\left|a^{\prime}\left(x_{2}\right)\right|^{2} & 0 \\
0 & 0
\end{array}\right]
$$

\& Note that the resulting limit matrix is not of full rank.

INTRODUCING WEIGHT FUNCTION IN THE EVOLUTION

\& We saw earlier that $u^{\varepsilon}\left(t, \Phi_{t / \varepsilon}(x)\right)$ solves

$$
\partial_{t} u^{\varepsilon}-\nabla_{X} \cdot\left(J\left(\frac{t}{\varepsilon}, x\right){ }^{\top} J\left(\frac{t}{\varepsilon}, x\right) \nabla_{X} u^{\varepsilon}\right)=0
$$

Definition (Initial layer time variable)

Introduce a new time variable via the ode

$$
\frac{\mathrm{d} T(t ; \varepsilon)}{\mathrm{d} t}=\frac{1}{\omega^{2}(t / \varepsilon)}=1+\frac{t^{2}}{\varepsilon^{2}} ; \quad T(0, \varepsilon)=0
$$

\& Rather than looking at $u^{\varepsilon}\left(t, \Phi_{t / \varepsilon}(x)\right)$, consider $u^{\varepsilon}\left(T(t ; \varepsilon), \Phi_{t / \varepsilon}(x)\right)$ which solves

$$
\begin{aligned}
\frac{1}{\omega^{2}(t / \varepsilon)} \partial_{T} u^{\varepsilon} & \left(T(t ; \varepsilon), \Phi_{t / \varepsilon}(x)\right) \\
& =\nabla_{X} \cdot\left(J\left(\frac{t}{\varepsilon}, x\right)^{\top} J\left(\frac{t}{\varepsilon}, x\right) \nabla_{X} u^{\varepsilon}\left(T(t ; \varepsilon), \Phi_{t / \varepsilon}(x)\right)\right)
\end{aligned}
$$

\& Explicit integration yields

$$
T(t ; \varepsilon)=t+\frac{t^{3}}{3 \varepsilon^{2}}
$$

\& Note that for $\varepsilon \ll 1$, we have

$$
t \sim \varepsilon^{\frac{2}{3}} T^{\frac{1}{3}}
$$

\& Pass to the limit as $\varepsilon \rightarrow 0$ (at least formally)

$$
\partial_{T} u_{0}(T, X)=\left|a^{\prime}\left(X_{2}\right)\right|^{2} \partial_{X_{1}}^{2} u_{0}(T, X) ; \quad u\left(0, X_{1}, X_{2}\right)=u^{\mathrm{in}}\left(X_{1}, X_{2}\right)
$$

\& Equation is degenerate - diffusion occurs only in X_{1} direction.
\& Diffusion occurs along the direction of the flow.
\& Long time behaviour of the solution $u_{0}\left(T, X_{1}, X_{2}\right)$: for each X_{2}

$$
\lim _{T \rightarrow \infty} \int\left|u_{0}\left(T, X_{1}, X_{2}\right)-\mathcal{P} u^{\mathrm{in}}\left(X_{2}\right)\right|^{2} \mathrm{~d} X_{1}=0
$$

AFTER THE INITIAL LAYER DYNAMICS

\& Initial layer dynamics has projected the initial datum on to $\mathcal{N}_{\mathbf{b}}$
\& Recall the evolution equation with constraint and projected datum

$$
\begin{aligned}
\partial_{t} \bar{u}-\Delta \bar{u} & =g \in \mathcal{N}_{\mathbf{b}}^{\perp} \\
\bar{u}(t, \cdot) & \in \mathcal{N}_{\mathbf{b}} \\
\bar{u}(0, \cdot) & =\mathcal{P} u^{\text {in }}(\cdot)
\end{aligned}
$$

4. In case of the shear flow: initial datum $\mathcal{P} u^{\text {in }}\left(x_{2}\right)$
\& In case of the shear flow: constraint $\bar{u}(t, \cdot) \in \mathcal{N}_{\mathbf{b}} \Longrightarrow \bar{u} \equiv \bar{u}\left(t, x_{2}\right)$
\& The evolution equation then becomes

$$
\partial_{t} \bar{u}-\partial_{x_{2}}^{2} \bar{u}=g \in \mathcal{N}_{\mathbf{b}}^{\perp}
$$

\& At times of $\mathcal{O}(1)$ - diffusion orthogonal to flow lines

HAMILTONIAN FLOWS

\& For a stream function $H\left(x_{1}, x_{2}\right)$, consider

$$
\mathbf{b}(x)=\nabla^{\perp} H=\binom{-\partial_{x_{2}} H}{\partial_{x_{1}} H}
$$

\& ∇H and $\nabla^{\perp} H$ are orthogonal away from fixed points of H.

Lemma (HOLDING, H, RAUCH (2017))

Let x be a periodic point of the flow with period $P(x)$. Then,

$$
\begin{aligned}
J(\tau, x) \nabla^{\perp} H(x)= & \left(\nabla^{\perp} H\right)\left(\Phi_{-\tau}(x)\right), \\
J(\tau, x) \nabla H(x)= & \left(\nabla^{\perp} H\right)\left(\Phi_{-\tau}(x)\right)\left[\frac{(\nabla P(x) \cdot \nabla H(x))}{P(x)} \tau+f(\tau, x)\right]+ \\
& +\frac{|\nabla H(x)|^{2}}{\left|(\nabla H)\left(\Phi_{-\tau}(x)\right)\right|^{2}}(\nabla H)\left(\Phi_{-\tau}(x)\right),
\end{aligned}
$$

where $f(\cdot, x)$ is a continuous $P(x)$-periodic function.
\& Enhanced relaxation along the flow in a time-boundary layer.
\& At times of $\mathcal{O}(1)$ - diffusion orthogonal to flow lines.
\& A close link to results in Freidlin-Wentzell theory.
[Ref.] M.FREIDLIN, A.WENTZELL, Springer-Verlag (1998).

STRONG CONVERGENCE

Theorem (HOLDING, H, RAUCH (2018))

Let $\mathbf{b}(x)=\nabla^{\perp} H$ for some non-degenerate $2 D$ Hamiltonian. Let $u^{\varepsilon}(t, x)$ be the solution family to the initial-boundary value problem. Let $\bar{u}(t, x)$ be the solution to the evolution equation with the constraint. Then we have

$$
\lim _{\varepsilon \rightarrow 0}\left\|u^{\varepsilon}-\bar{u}\right\|_{L^{2}((0, \ell) \times \Omega)}=0
$$

\& Cellular flows (Taylor stream function)

$$
H\left(x_{1}, x_{2}\right)=\sin \left(x_{1}\right) \sin \left(x_{2}\right)
$$

$\%$ Cat's eye flows

$$
\begin{aligned}
H\left(x_{1}, x_{2}\right)= & \sin \left(x_{1}\right) \sin \left(x_{2}\right) \\
& +\delta \cos \left(x_{1}\right) \cos \left(x_{2}\right)
\end{aligned}
$$

SOME EXAMPLES OF ADVECTIVE FIELDS

\& ABC flows
(ARNOLD-BELTRAMI-CHILDRESS)

$$
\left(\begin{array}{l}
\mathbf{b}_{1} \\
\mathbf{b}_{2} \\
\mathbf{b}_{3}
\end{array}\right)=\left(\begin{array}{l}
A \sin (z)+C \cos (y) \\
B \sin (x)+A \cos (z) \\
C \sin (y)+B \cos (x)
\end{array}\right)
$$

\& Take $(A, B, C)=(0,1,1)$

$$
\begin{aligned}
\left(\begin{array}{l}
\mathbf{b}_{1} \\
\mathbf{b}_{2} \\
\mathbf{b}_{3}
\end{array}\right) & =\left(\begin{array}{c}
\cos (y) \\
\sin (x) \\
\sin (y)+\cos (x)
\end{array}\right) \\
& =\left(\begin{array}{c}
\partial_{y} H \\
-\partial_{x} H \\
H(x, y)
\end{array}\right)
\end{aligned}
$$

\& Hamiltonian

$$
H(x, y)=\sin (y)+\cos (x)
$$

HYPERBOLIC FLOWS (ANOSOV FLOWS)

$$
\begin{gathered}
\binom{\mathbf{b}_{1}}{\mathbf{b}_{2}}=\binom{-\lambda x_{1}}{\lambda x_{2}} \quad \text { i.e., with } H\left(x_{1}, x_{2}\right)=\lambda x_{1} x_{2} . \\
\left(\Phi_{\tau}^{1}, \Phi_{\tau}^{2}\right)\left(x_{1}, x_{2}\right)=\left(e^{-\lambda \tau} x_{1}, e^{\lambda \tau} x_{2}\right) ; \quad J(\tau)=\left(\begin{array}{cc}
e^{-\lambda \tau} & 0 \\
0 & e^{\lambda \tau}
\end{array}\right)
\end{gathered}
$$

\& Considering microscopic oscillations in fluid fields

$$
\mathbf{b}\left(x, \frac{x}{\varepsilon}, \frac{x}{\varepsilon^{2}}, \cdots, \frac{x}{\varepsilon^{n}}\right)
$$

collaboration with G.PAVLIOTIS (IMPERIAL).
\& Stochastic homogenization with random solenoidal fields

$$
\mathbf{b}\left(\frac{x}{\varepsilon}, \omega\right)
$$

collaboration with S.NEUKAMM, M.SCHÄFFNER (DRESDEN).
\& Numerical illustration of the time-boundary layer phenomenon using adaptive wavelet galerkin method collaboration with R.STEVENSON (AMSTERDAM).
\& High contrast in diffusivity
collaboration with K.CHEREDNICHENKO (BATH), S.COOPER (DURHAM).

RELAXATION TO EQUILIBRIUM

Proposition (long time behaviour)

There exists a uniform constant $\gamma>0$ such that

$$
\left\|u^{\varepsilon}(t, \cdot)-\left\langle u^{\mathrm{in}}\right\rangle\right\|_{\mathrm{L}^{2}(\Omega)} \lesssim e^{-\gamma t}
$$

where $\left\langle u^{\text {in }}\right\rangle$ denotes the average

$$
\left\langle u^{\mathrm{in}}\right\rangle:=\frac{1}{|\Omega|} \int_{\Omega} u^{\mathrm{in}}(x) \mathrm{d} x
$$

Multiply the evolution by $u^{\varepsilon}(t, x)$ and integrate over the spatial domain $\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t} \int_{\Omega}\left|u^{\varepsilon}(t, x)\right|^{2} \mathrm{~d} x+\frac{1}{2 \varepsilon} \int_{\Omega} \mathbf{b}(x) \cdot \nabla\left|u^{\varepsilon}(t, x)\right|^{2} \mathrm{~d} x+\int_{\Omega}\left|\nabla u^{\varepsilon}(t, x)\right|^{2} \mathrm{~d} x=0$

$$
\text { i.e., } \quad \frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t} \int_{\Omega}\left|u^{\varepsilon}(t, x)\right|^{2} \mathrm{~d} x=-\int_{\Omega}\left|\nabla u^{\varepsilon}(t, x)\right|^{2} \mathrm{~d} x \text {. }
$$

Result follows by Poincaré inequality and Grönwall's inequality.

QUICKER RELAXATION

Definition (Relaxation enhancing fields)

An incompressible field $\mathbf{b}(x)$ is called relaxation enhancing if for any $\delta>0$, there exists $\bar{\varepsilon}(\delta)>0$ such that $\forall \varepsilon$ with $\varepsilon<\bar{\varepsilon}(\delta)$ we have

$$
\left\|u^{\varepsilon}(1, \cdot)-\left\langle u^{\mathrm{in}}\right\rangle\right\|_{\mathrm{L}^{2}(\Omega)}<\delta .
$$

[Ref.] P.CONSTANTIN, A.KISELEV, L.RYZHIK, A.ZLATOS, Ann. Math. (2008).
[Ref.] H.BERESTYCKI, F.HAMEL, N.NADIRASHVILI, Comm. Pure Appl. Math. (2005).
[Ref.] B.FAYAD, Ergodic Theory Dynam. Systems (2002).
[Ref.] B.FRANKE, C.-R.HWANG, H.-M.PAI, S.-J.SHEU, Trans. Amer. Math. Soc. (2010).
[Ref.] J.BEDROSSIAN, M.COTI ZELATI, Arch. Rational Mech. Anal. (2017).

Theorem (Constantin et al. (2008))

An incompressible field $\mathbf{b}(x)$ is relaxation enhancing if and only if
$\mathcal{N}_{\mathbf{b}} \cap \mathrm{H}^{1}(\Omega) \quad$ has no non-trivial elements.

REFERENCES TO CONSULT:

[Ref.] MCLAUGHLIN, PAPANICOLAOU, PIRONNEAU, SIAM J. Appl. Math. (1985). [Ref.] AVELLANEDA, MAJDA, J. Stat. Phy. (1992).
[Ref.] FANNJIANG, PAPANICOLAOU, SIAM J. Appl. Math. (1994).
[Ref.] FREIDLIN, WENTZELL, Springer-Verlag (1998).
[Ref.] MAJDA, KRAMER, Physics Reports (1999).
[Ref.] NGUETSENG, z. Anal. Anw. (2003, 2004).
[Ref.] MARUSIC-PALOKA, PIATNITSKI, J. London Math. Soc. (2005).
[Ref.] BERESTYCKI, HAMEL, NADIRASHSHVILI, Comm. Pure Appl. Math. (2005).
[Ref.] CONSTANTIN, KISELEV, RYZHIK, ZLATOS, Ann. Math. (2008).
[Ref.] ZLATOS, Comm. Partial Differential Equations (2010).
[Ref.] ISHII, SOUGANIDIS, J. Differential Equations (2012).
[Ref.] HOLDing, HUTRIDURGA, RAUCH, siam J. Math. Anal., (2017).
[Ref.] J.BEDROSSIAN, M.COTI ZELATI, Arch. Rational Mech. Anal. (2017).

