High-contrast homogenization of high-contrast PDE systems

Valery Smyshlyaev

University College London, UK

June 18, 2018

(partly joint with Ilia Kamotski UCL, and Shane Cooper Durham)

Valery Smyshlyaev (University College Londo, High-contrast homogenization of high-contra

Outline:

- Classical vs high-contrast (= 'microresonant') homogenization, from a spectral theoretic point of view (re V.V. Zhikov 2000, and followers).

- Effects: band gaps, dispersion, 'negative' materials, etc.

- **Analysis**: ('two-scale') resolvent convergence /semigroups/ spectral convergence, (two-scale) compactness, etc.

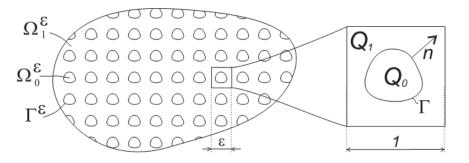
- **'Partial' degeneracies** and 'generalised' micro-resonances (more of effects/ applications); <u>A general theory</u> for **PDE systems** under a generic 'decomposition' assumption: I. Kamotski & V.S., *Applicable Analysis* 2018, a special issue in memory of V.V. Zhikov.

- Failure of the above decomposition assumption vs two-scale convergence w.r.t. **measures** (Zhikov 2000): example of highly anisotropic fibers from Cherednichenko, S., Zhikov'06.

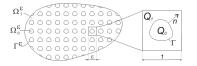
- From two-scale convergence to error bounds: Error bounds for EVs and EFs for a defect in a high-contrast medium, Kamotski & S., *J. Math. Sci N.Y.* 2018, another special issue in memory of V.V. Zhikov.

+ Some current developments.

ヘロト 不得 トイヨト イヨト 二日



(For example) for the wave equation:



$$\rho^{\varepsilon}(x)u_{tt} - \operatorname{div}\left(a^{\varepsilon}(x)\nabla u^{\varepsilon}\right) = 0 \text{ in } \Omega \subseteq \mathbb{R}^{d}$$
$$u(x,0) = f(x), \ u_{t}(x,0) = g(x) \ (+BCs)$$

(For example) for the wave equation:

$$\rho^{\varepsilon}(x)u_{tt} - \operatorname{div}\left(a^{\varepsilon}(x)\nabla u^{\varepsilon}\right) = 0 \text{ in } \Omega \subseteq \mathbb{R}^{d}$$
$$u(x,0) = f(x), \ u_{t}(x,0) = g(x) \ (+BCs)$$

$$a(y),
ho(y)$$
 Q -periodic in y;
 $Q=[0,1]^d$ unit cube.

Valery Smyshlyaev (University College Londo, High-contrast homogenization of high-contra

 $\Omega_{1}^{\varepsilon} \longrightarrow \Omega_{2}^{\varepsilon} \longrightarrow \Omega_{2$

$$a^{\varepsilon}(x) = a(x/\varepsilon), \ \rho^{\varepsilon} = \rho(x/\varepsilon)$$

(For example) for the wave equation:

$$\rho^{\varepsilon}(x)u_{tt} - \operatorname{div} (a^{\varepsilon}(x)\nabla u^{\varepsilon})) = 0 \text{ in } \Omega \subseteq \mathbb{R}^{d}$$
$$u(x,0) = f(x), \ u_{t}(x,0) = g(x) \ (+BCs)$$

$$a^{\varepsilon}(x) = a(x/\varepsilon), \ \rho^{\varepsilon} = \rho(x/\varepsilon)$$

 Q_o

 $a(y), \rho(y)$ *Q*-periodic in y; $Q = [0, 1]^d$ unit cube.

 $0 <
u \leq a(y), \
ho(y) \leq
u^{-1}$ (uniformly positive, bounded)

(For example) for the wave equation:

$$\rho^{\varepsilon}(x)u_{tt} - \operatorname{div}\left(a^{\varepsilon}(x)\nabla u^{\varepsilon}\right) = 0 \text{ in } \Omega \subseteq \mathbb{R}^{d}$$
$$u(x,0) = f(x), \ u_{t}(x,0) = g(x) \ (+BCs)$$

$$a^{\varepsilon}(x) = a(x/\varepsilon), \ \rho^{\varepsilon} = \rho(x/\varepsilon)$$

 Q_o

 $a(y), \rho(y)$ *Q*-periodic in y; $Q = [0, 1]^d$ unit cube.

 $0 < \nu \leq a(y), \
ho(y) \leq
u^{-1}$ (uniformly positive, bounded)

Asymptotic expansion:

$$\begin{split} u^{\varepsilon}(x,t) &\sim u^0(x,x/\varepsilon,t) + \varepsilon u^1(x,x/\varepsilon,t) + \varepsilon^2 u^2(x,x/\varepsilon,t) + \\ \dots & u^0(x,y,t), u^1(x,y,t), \dots \ Q \text{-periodic in y} \end{split}$$

$$\varepsilon^{-2}$$
: $u^0 = u(x,t)$ (\equiv 'long wavelengths' \equiv 'low frequencies')

Image: A match a ma

$$\begin{split} \varepsilon^{-2} : & u^0 = u(x,t) \quad (\equiv \text{`long wavelengths'} \equiv \text{`low frequencies'}) \\ \varepsilon^{-1} : & u^1 = \sum_j N_j(y) \frac{\partial u^0}{\partial x_j}(x,t) \end{split}$$

$$\begin{split} \varepsilon^{-2} : & u^0 = u(x,t) \quad (\equiv \text{`long wavelengths'} \equiv \text{`low frequencies'}) \\ \varepsilon^{-1} : & u^1 = \sum_j N_j(y) \frac{\partial u^0}{\partial x_j}(x,t) \end{split}$$

N solutions of "cell problem" $\operatorname{div}_{y}(a(y)(e^{j} + \nabla_{y}N_{j})) = 0$

$$\begin{split} \varepsilon^{-2} : & u^0 = u(x,t) \quad (\equiv \text{`long wavelengths'} \equiv \text{`low frequencies'}) \\ \varepsilon^{-1} : & u^1 = \sum_j N_j(y) \frac{\partial u^0}{\partial x_j}(x,t) \end{split}$$

N solutions of "cell problem" $\operatorname{div}_{y}(a(y)(e^{j} + \nabla_{y}N_{j})) = 0$ $\varepsilon^{0}: \rho^{\operatorname{hom}}u_{tt}^{0} - \operatorname{div}(a^{\operatorname{hom}}\nabla u^{0})) = f(x),$ homogenized eqn

$$\begin{split} \varepsilon^{-2} : & u^0 = u(x,t) \quad (\equiv \text{`long wavelengths'} \equiv \text{`low frequencies'}) \\ \varepsilon^{-1} : & u^1 = \sum_j N_j(y) \frac{\partial u^0}{\partial x_j}(x,t) \end{split}$$

N solutions of "cell problem" $\operatorname{div}_{y} (a(y)(e^{j} + \nabla_{y}N_{j})) = 0$ $\varepsilon^{0} : \rho^{\operatorname{hom}} u_{tt}^{0} - \operatorname{div} (a^{\operatorname{hom}} \nabla u^{0})) = f(x)$, homogenized eqn $\rho^{\operatorname{hom}} = \langle \rho(y) \rangle_{y}$ homogenised (averaged) density $a^{\operatorname{hom}} = \langle a(y) (I + \nabla_{y}N) \rangle_{y}$ homogenised stiffness tensor

$$\begin{split} \varepsilon^{-2} : & u^0 = u(x,t) \quad (\equiv \text{`long wavelengths'} \equiv \text{`low frequencies'}) \\ \varepsilon^{-1} : & u^1 = \sum_j N_j(y) \frac{\partial u^0}{\partial x_j}(x,t) \end{split}$$

N solutions of "cell problem" $\operatorname{div}_{y} (a(y)(e^{j} + \nabla_{y}N_{j})) = 0$ $\varepsilon^{0} : \rho^{\operatorname{hom}} u_{tt}^{0} - \operatorname{div} (a^{\operatorname{hom}} \nabla u^{0})) = f(x)$, homogenized eqn $\rho^{\operatorname{hom}} = \langle \rho(y) \rangle_{y}$ homogenised (averaged) density $a^{\operatorname{hom}} = \langle a(y) (I + \nabla_{y}N) \rangle_{y}$ homogenised stiffness tensor

 $0 < \nu I \leq a^{
m hom}, \
ho^{
m hom} \leq
u^{-1} I$ (uniform positivity inherited)

$$\begin{split} \varepsilon^{-2} : & u^0 = u(x,t) \quad (\equiv \text{`long wavelengths'} \equiv \text{`low frequencies'}) \\ \varepsilon^{-1} : & u^1 = \sum_j N_j(y) \frac{\partial u^0}{\partial x_j}(x,t) \end{split}$$

N solutions of "cell problem" $\operatorname{div}_{y}(a(y)(e^{j} + \nabla_{y}N_{j})) = 0$ $\varepsilon^{0}: \rho^{\operatorname{hom}}u_{tt}^{0} - \operatorname{div}(a^{\operatorname{hom}}\nabla u^{0})) = f(x)$, homogenized eqn $\rho^{\operatorname{hom}} = \langle \rho(y) \rangle_{y}$ homogenised (averaged) density $a^{\operatorname{hom}} = \langle a(y)(I + \nabla_{y}N) \rangle_{y}$ homogenised stiffness tensor

 $0 < \nu I \leq a^{\text{hom}}, \ \rho^{\text{hom}} \leq \nu^{-1} I$ (uniform positivity inherited)

The Homogenisation Theorem

The solution $u^{\varepsilon}(x, t)$ of the original problem converges, in appropriate norms, to the solution $u_0(x, t)$ of the homogenised problem, as $\varepsilon \to 0$.

Spectral Theory point of view: resolvent convergence $A^{\varepsilon}u = -\operatorname{div}(a^{\varepsilon}(x)\nabla u)$ is a non-negative self-adjoint operator in Hilbert space $H = L^2(\Omega)$; Ω e.g. bounded Lipschitz (with Dirichlet or Neumann B.C.) or $\Omega = \mathbb{R}^d$.

Let $\lambda > 0$ and let $u^{\varepsilon} \in H^1_0(\Omega)$ be the unique solution of

$$-\mathrm{div}\left(a^{\varepsilon}(x)\nabla u^{\varepsilon}\right) + \lambda u^{\varepsilon} = f^{\varepsilon} \quad \longleftrightarrow \quad u^{\varepsilon} = R^{\varepsilon}_{\lambda}f^{\varepsilon},$$

 $R_{\lambda}^{\varepsilon} = (A^{\varepsilon} + \lambda I)^{-1}$ the resolvent. Then

(classical) <u>Theorem</u> (weak/ strong resolvent convergence): Let $f^{\varepsilon}, f_0 \in L^2(\Omega), f^{\varepsilon} \to f_0$ weakly/ strongly in L^2 . Then $\forall \lambda > 0$,

 $R^{\varepsilon}_{\lambda}f^{\varepsilon} \to R^{hom}_{\lambda}f_0 \ \, (\text{weakly}/ \text{ strongly in } L^2),$

where $R_{\lambda}^{hom} = (A^{hom} + \lambda I)^{-1}$ is the resolvent of the homogenised (non-negative, self-adjoint) operator $A^{hom} = -\text{div} (a^{hom} \nabla \cdot)$.

N.B. In fact, for $\Omega = \mathbb{R}^d$ or Ω bounded $C^{1,1}$ a (much) stronger operator convergence with an estimate holds, Birman & Suslina ≥ 2000 .

$$\left\| R_{\lambda}^{\varepsilon} - R_{\lambda}^{hom} \right\|_{L^{2} \to L^{2}} \leq C \varepsilon.$$

Classical periodic homogenisation: Implications of the resolvent convergence

The strong resolvent convergence implies:

- Strong convergence of spectral projectors;

- Strong convergence of (parabolic) semigroups (Trotter-Kato theorem), and hence of associated parabolic Cauchy problems;

- Convergence of hyperbolic semigroups (and hence of hyperbolic Cauchy problems);

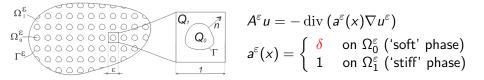
- 'Part of' Hausdorff convergence of spectra: $\lambda_0 \in \sigma(A^{hom}) \Rightarrow \exists \lambda^{\varepsilon} \in \sigma(A^{\varepsilon})$ such that $\lambda^{\varepsilon} \to \lambda^0$.

Additionally, often (if e.g. Ω bounded Dirichlet), 'spectral compactness' holds (by separate means):

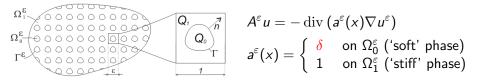
$$\lambda^{\varepsilon} \in \sigma(A^{\varepsilon}) \text{ and } \lambda^{\varepsilon} \to \lambda_0 \Rightarrow \lambda_0 \in \sigma(A^{hom}).$$

(Implying hence a 'full' convergence of spectra.)

High-contrast homogenization and 'non-classical' two-scale limits (Zhikov 2000, 2004)

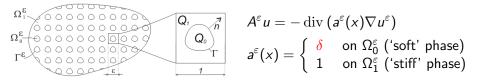


High-contrast homogenization and 'non-classical' two-scale limits (Zhikov 2000, 2004)



Contrast $\delta \sim \varepsilon^2$ is a **critical scaling** giving rise to 'non-classical' effects (Khruslov 1980s; Arbogast, Douglas, Hornung 1990; Panasenko 1991; Allaire 1992; Sandrakov 1999; Brianne 2002; Bourget, Mikelic, Piatnitski 2003; Bouchitte & Felbaq 2004, ...): elliptic, spectral, parabolic, hyperbolic, nonlinear, non-periodic/ random,

High-contrast homogenization and 'non-classical' two-scale limits (Zhikov 2000, 2004)



Contrast $\delta \sim \varepsilon^2$ is a **critical scaling** giving rise to 'non-classical' effects (Khruslov 1980s; Arbogast, Douglas, Hornung 1990; Panasenko 1991; Allaire 1992; Sandrakov 1999; Brianne 2002; Bourget, Mikelic, Piatnitski 2003; Bouchitte & Felbaq 2004, ...): elliptic, spectral, parabolic, hyperbolic, nonlinear, non-periodic/ random,

WHY?

• High contrast: $a_i/a_m =: \delta \ll 1$, $\rho_i \sim \rho_m$ (for simplicity)

Image: A math a math

• High contrast: $a_i/a_m =: \delta \ll 1$, $\rho_i \sim \rho_m$ (for simplicity)

 $\rho u_{tt} - \operatorname{div}(a\nabla u) = 0$

• High contrast: $a_i/a_m =: \delta \ll 1$, $\rho_i \sim \rho_m$ (for simplicity)

$$\rho u_{tt} - \operatorname{div}(a\nabla u) = 0$$

For a, ρ constant \rightarrow dispersion relation: $u = e^{ik \cdot x - i\omega t} \Rightarrow$

• High contrast: $a_i/a_m =: \delta \ll 1$, $\rho_i \sim \rho_m$ (for simplicity)

$$\rho u_{tt} - \operatorname{div}(a\nabla u) = 0$$

For a, ρ constant \rightarrow dispersion relation: $u = e^{ik \cdot x - i\omega t} \Rightarrow$

$$-\rho\omega^{2} + a|k|^{2} = 0 \implies |k| = (\rho/a)^{1/2}\omega$$
$$\implies \text{Wavelength:} \quad \lambda = 2\pi/|k| = 2\pi (a/\rho)^{1/2}\omega^{-1}$$
$$\implies \lambda_{m}/\lambda_{i} \sim (a_{m}/a_{i})^{1/2} = \delta^{-1/2} \gg 1$$

• High contrast: $a_i/a_m =: \delta \ll 1$, $\rho_i \sim \rho_m$ (for simplicity)

$$\rho u_{tt} - \operatorname{div}(a\nabla u) = 0$$

For a, ρ constant \rightarrow dispersion relation: $u = e^{ik \cdot x - i\omega t} \Rightarrow$

$$\begin{aligned} -\rho\omega^2 + a|k|^2 &= 0 \implies |k| = (\rho/a)^{1/2}\omega \\ \Rightarrow \text{Wavelength:} \quad \lambda &= 2\pi/|k| = 2\pi (a/\rho)^{1/2}\omega^{-1} \\ \Rightarrow \lambda_m/\lambda_i \sim (a_m/a_i)^{1/2} = \delta^{-1/2} \gg 1 \end{aligned}$$

• Resonant inclusions: $\lambda_i \sim \varepsilon$.

• High contrast: $a_i/a_m =: \delta \ll 1$, $\rho_i \sim \rho_m$ (for simplicity)

$$\rho u_{tt} - \operatorname{div}(a\nabla u) = 0$$

For a, ho constant ightarrow dispersion relation: $u = e^{ik \cdot x - i\omega t} \Rightarrow$

$$\begin{aligned} -\rho\omega^2 + a|k|^2 &= 0 \implies |k| = (\rho/a)^{1/2}\omega \\ \Rightarrow \text{Wavelength:} \quad \lambda &= 2\pi/|k| = 2\pi (a/\rho)^{1/2}\omega^{-1} \\ \Rightarrow \quad \lambda_m/\lambda_i \sim (a_m/a_i)^{1/2} = \delta^{-1/2} \gg 1 \end{aligned}$$

• Resonant inclusions:
$$\lambda_i \sim \varepsilon$$
.
• $\lambda_m \sim 1$ (Macroscale) $\Rightarrow \lambda_m / \lambda_i \sim \varepsilon^{-1} \Rightarrow \delta \sim \varepsilon^2$

$$a^arepsilon(x) = \left\{egin{array}{cc} arepsilon^2 & ext{ on } \Omega_0^arepsilon \ 1 & ext{ on } \Omega_1^arepsilon \ (ext{matrix}) \end{array}
ight.$$

Two-scale formal asymptotic expansion: div $(a^{\varepsilon}(x)\nabla u^{\varepsilon}) + \lambda \rho u^{\varepsilon} = 0$ (time harmonic waves) $\iff A^{\varepsilon}u^{\varepsilon} = \lambda u^{\varepsilon}, \ \lambda = \rho \omega^2$ (spectral problem). Seek $u^{\varepsilon}(x) \sim u^0(x, x/\varepsilon) + \varepsilon u^1(x, x/\varepsilon) + \dots u^j(x, y)$ Q-periodic in y.

$$a^{arepsilon}(x) = \left\{egin{array}{cc} arepsilon^2 & ext{ on } \Omega_0^arepsilon \ 1 & ext{ on } \Omega_1^arepsilon \ (ext{matrix}) \end{array}
ight.$$

Two-scale formal asymptotic expansion: div $(a^{\varepsilon}(x)\nabla u^{\varepsilon}) + \lambda \rho u^{\varepsilon} = 0$ (time harmonic waves) $\iff A^{\varepsilon}u^{\varepsilon} = \lambda u^{\varepsilon}, \quad \lambda = \rho \omega^2$ (spectral problem). Seek $u^{\varepsilon}(x) \sim u^0(x, x/\varepsilon) + \varepsilon u^1(x, x/\varepsilon) + \dots u^j(x, y)$ Q-periodic in y.

THEN:

Two-scale limit problem (Zhikov 2000, 2004) Then

$$u^{0}(x,y) = \begin{cases} u_{0}(x) & \text{in } Q_{1} \quad (\text{still low frequency}) \\ \\ w(x,y) & \text{in } Q_{0} \quad (\text{`resonance' frequency}) \end{cases}$$

Two-scale limit problem (Zhikov 2000, 2004) Then

 $u^{0}(x,y) = \begin{cases} u_{0}(x) & \text{in } Q_{1} \text{ (still low frequency)} \\ w(x,y) & \text{in } Q_{0} \text{ ('resonance' frequency)} \end{cases}$ $(u_{0},w), w(x,y) := u_{0}(x) + v(x,y), \text{ solves the two-scale limit spectral problem} \quad (\longleftrightarrow A^{0}u^{0}(x,y) = \lambda u^{0}): \\ -\text{div}_{x}(A^{hom}\nabla_{x}u_{0}(x)) = \lambda u_{0}(x) + \lambda \langle v \rangle_{y}(x) \text{ in } \Omega \end{cases}$

$$-\Delta_y v(x, y) = \lambda(u_0(x) + v(x, y)) \quad \text{in } Q_0$$
$$v(x, y) = 0 \quad \text{on } \partial Q_0,$$

 A^{hom} homogenized matrix for the 'perforated' domain; $\langle v \rangle_y(x) := \int_Q v(x, y) dy.$

Two-scale limit problem (Zhikov 2000, 2004) Then

 $u^{0}(x,y) = \begin{cases} u_{0}(x) & \text{in } Q_{1} \quad (\text{still low frequency}) \\ w(x,y) & \text{in } Q_{0} \quad (\text{`resonance' frequency}) \end{cases}$ $(u_{0},w), w(x,y) := u_{0}(x) + v(x,y), \text{ solves the two-scale limit spectral problem} \quad (\longleftrightarrow A^{0}u^{0}(x,y) = \lambda u^{0}):$

$$-\mathrm{div}_{x}(A^{hom}\nabla_{x}u_{0}(x)) = \lambda u_{0}(x) + \lambda \langle v \rangle_{y}(x) \text{ in } \Omega$$

$$-\Delta_y v(x, y) = \lambda(u_0(x) + v(x, y)) \quad \text{in } Q_0$$
$$v(x, y) = 0 \quad \text{on } \partial Q_0,$$

 A^{hom} homogenized matrix for the 'perforated' domain; $\langle v \rangle_y(x) := \int_Q v(x, y) dy.$

Uncouple it \downarrow

Two-scale limit spectral problem

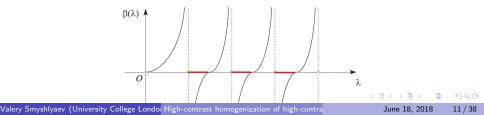
Decouple by choosing $v(x, y) = \lambda u_0(x)b(y)$

$$-\Delta_y b(y) - \lambda b = 1$$
 in Q_0
 $b(y) = 0$ on ∂Q_0

$$-\text{div}_{x}(A^{nom}\nabla u_{0}(x)) = \beta(\lambda)u_{0}(x), \quad \text{in } \Omega,$$

where $\beta(\lambda) = \lambda + \lambda^{2}\langle b \rangle = \lambda + \lambda^{2}\sum_{j=1}^{\infty} \frac{\langle \phi_{j} \rangle_{y}^{2}}{\lambda_{j} - \lambda}$

 (λ_j, ϕ_j) Dirichlet eigen-values/functions of $-\Delta_y$ in inclusion Q_0 (= "micro-resonances"): $\beta < 0$: band gaps (Zhikov 2000); $\beta(\lambda) = \mu(\omega) < 0 \iff$ "negative density/ magnetism" (Bouchitté & Felbacq, 2004), etc.



Analysis: Two-scale Convergence

Definition

1. Let $u_{\varepsilon}(x)$ be a bounded sequence in $L^{2}(\Omega)$. We say (u_{ε}) weakly two-scale converges to $u_{0}(x, y) \in L^{2}(\Omega \times Q)$, denoted by $u_{\varepsilon} \xrightarrow{2} u_{0}$, if for all $\phi \in C_{0}^{\infty}(\Omega)$, $\psi \in C_{\#}^{\infty}(Q)$

$$\int_{\Omega} u_{\varepsilon}(x)\phi(x)\psi\left(\frac{x}{\varepsilon}\right) \mathrm{d}x \longrightarrow \int_{\Omega} \int_{Q} u_{0}(x,y)\phi(x)\psi(y) \, \mathrm{d}x \mathrm{d}y$$

as $\varepsilon \to 0$.

2. We say $(u_{\varepsilon}) \xrightarrow{\text{strongly}}$ two-scale converges to $u_0 \in L^2(\Omega \times Q)$, denoted by $u_{\varepsilon} \xrightarrow{2} u_0$, if for all $v_{\varepsilon} \xrightarrow{2} v_0(x, y)$,

$$\int_{\Omega} u_{\varepsilon}(x) v_{\varepsilon}(x) \mathrm{d} x \longrightarrow \int_{\Omega} \int_{Q} u_{0}(x, y) v_{0}(x, y) \, \mathrm{d} x \mathrm{d} y$$

as $\varepsilon \to 0$. (implies convergence of norms upon sufficient regularity)

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

1. Two-scale limit operator:

 A_0 self-adjoint in $H \subset L^2(\Omega \times Q)$, with a band-gap spectrum $\sigma(A_0)$.

 $H = L^2(\Omega; \mathbb{C} + L^2(Q_0))$. The (closed, non-negative, densely defined) form for A_0 on $U = \{u(x, y) = u_0(x) + v(x, y) : u_0 \in H^1_0(\Omega), v \in L^2(\Omega; H^1_0(Q_0))\} \subset H$:

$$\beta(u,u) = \int_{\Omega} A^{hom} \nabla_{x} u_{0} \cdot \overline{\nabla_{x} u_{0}} dx + \int_{\Omega} \int_{Q_{0}} |\nabla_{y} v(x,y)|^{2} dy dx,$$

with domain $D(A_0) \subset U$. Then, e.g. for $\Omega = \mathbb{R}^d$, the spectrum of A^0 is:

$$\sigma(A^0) = \{\lambda \ge 0 : \beta(\lambda) \ge 0\} \cup_{j=1}^\infty \lambda_j^D(Q_0)$$

2. Two-scale ('pseudo'-)resolvent convergence:

 $\begin{aligned} \forall \lambda > 0, \quad A^{\varepsilon} u^{\varepsilon} + \lambda u^{\varepsilon} &= f^{\varepsilon} \in L^{2}(\Omega); \quad u^{\varepsilon} \in H^{1}_{0}(\Omega). \\ \text{If } f^{\varepsilon} \stackrel{2}{\rightarrow} f_{0}(x, y) \text{ then } u^{\varepsilon} \stackrel{2}{\rightarrow} u_{0}(x, y). (\text{If } f^{\varepsilon} \stackrel{2}{\rightarrow} f_{0}(x, y) \text{ then } u^{\varepsilon} \stackrel{2}{\rightarrow} u_{0}(x, y).) \\ \text{Here } u_{0} \text{ solves "two-scale limit resolvent problem" } A_{0}u_{0} + \lambda u_{0} &= P_{H}f_{0}. \end{aligned}$

2. Two-scale ('pseudo'-)resolvent convergence:

 $\begin{aligned} \forall \lambda > 0, \quad A^{\varepsilon} u^{\varepsilon} + \lambda u^{\varepsilon} &= f^{\varepsilon} \in L^{2}(\Omega); \quad u^{\varepsilon} \in H^{1}_{0}(\Omega). \\ \text{If } f^{\varepsilon} \stackrel{2}{\rightarrow} f_{0}(x, y) \text{ then } u^{\varepsilon} \stackrel{2}{\rightarrow} u_{0}(x, y). (\text{If } f^{\varepsilon} \stackrel{2}{\rightarrow} f_{0}(x, y) \text{ then } u^{\varepsilon} \stackrel{2}{\rightarrow} u_{0}(x, y).) \\ \text{Here } u_{0} \text{ solves "two-scale limit resolvent problem" } A_{0}u_{0} + \lambda u_{0} &= P_{H}f_{0}. \end{aligned}$

3. Spectral band gaps: (Let $\Omega = \mathbb{R}^d$) cf also Hempel & Lienau 2000

 $\sigma(A^{\varepsilon}) \rightarrow \sigma(A_0)$ in the sense of Hausdorff. (Hence a Band-gap effect: For small enough ε , A^{ε} has (the smaller ε the more) gaps. The proof follows from the above two-scale resolvent convergence + (additionally) "two-scale spectral compactness".

(人間) トイヨト イヨト ニヨ

2. Two-scale ('pseudo'-)resolvent convergence:

 $\begin{aligned} \forall \lambda > 0, \quad A^{\varepsilon} u^{\varepsilon} + \lambda u^{\varepsilon} &= f^{\varepsilon} \in L^{2}(\Omega); \quad u^{\varepsilon} \in H^{1}_{0}(\Omega). \\ \text{If } f^{\varepsilon} \stackrel{2}{\rightarrow} f_{0}(x, y) \text{ then } u^{\varepsilon} \stackrel{2}{\rightarrow} u_{0}(x, y). (\text{If } f^{\varepsilon} \stackrel{2}{\rightarrow} f_{0}(x, y) \text{ then } u^{\varepsilon} \stackrel{2}{\rightarrow} u_{0}(x, y).) \\ \text{Here } u_{0} \text{ solves "two-scale limit resolvent problem" } A_{0}u_{0} + \lambda u_{0} &= P_{H}f_{0}. \end{aligned}$

3. Spectral band gaps: (Let $\Omega = \mathbb{R}^d$) cf also Hempel & Lienau 2000

 $\sigma(A^{\varepsilon}) \rightarrow \sigma(A_0)$ in the sense of Hausdorff. (Hence a Band-gap effect: For small enough ε , A^{ε} has (the smaller ε the more) gaps. The proof follows from the above two-scale resolvent convergence + (additionally) "two-scale spectral compactness".

Limit band gaps = { $\lambda : \beta(\lambda) < 0$ } (Infinitely many)

ヘロト 不得 トイヨト イヨト 二日

Analysis (Zhikov 2000, 2004):

2. Two-scale ('pseudo'-)resolvent convergence:

 $\begin{aligned} \forall \lambda > 0, \quad A^{\varepsilon} u^{\varepsilon} + \lambda u^{\varepsilon} &= f^{\varepsilon} \in L^{2}(\Omega); \quad u^{\varepsilon} \in H^{1}_{0}(\Omega). \\ \text{If } f^{\varepsilon} \stackrel{2}{\rightarrow} f_{0}(x, y) \text{ then } u^{\varepsilon} \stackrel{2}{\rightarrow} u_{0}(x, y). (\text{If } f^{\varepsilon} \stackrel{2}{\rightarrow} f_{0}(x, y) \text{ then } u^{\varepsilon} \stackrel{2}{\rightarrow} u_{0}(x, y).) \\ \text{Here } u_{0} \text{ solves "two-scale limit resolvent problem" } A_{0}u_{0} + \lambda u_{0} &= P_{H}f_{0}. \end{aligned}$

3. Spectral band gaps: (Let $\Omega = \mathbb{R}^d$) cf also Hempel & Lienau 2000

 $\sigma(A^{\varepsilon}) \rightarrow \sigma(A_0)$ in the sense of Hausdorff. (Hence a Band-gap effect: For small enough ε , A^{ε} has (the smaller ε the more) gaps. The proof follows from the above two-scale resolvent convergence + (additionally) "two-scale spectral compactness".

$$\label{eq:limit_band_gaps} \begin{split} &= \{\lambda: \ \beta(\lambda) < 0\} \ \ (\text{Infinitely many}) \\ \text{N.B. Cherednichenko & Cooper (Arch Rat Mech Anal 2015) have} \\ & \text{improved the above strong two-scale resolvent convergence to an operator} \\ & \text{convergence, with an appropriate 'corrector'} \ B^{\varepsilon}: \end{split}$$

$$(A^{\varepsilon} + \alpha I)^{-1} \rightarrow (A_0 + B^{\varepsilon} + \alpha I)^{-1}$$

'Frequency' gaps and time-nonlocality (memory):

$$-\mathrm{div}_{x}(A^{hom}\nabla u_{0}(x)) = \beta(\omega)u_{0}(x)$$

(macroscopic) Dispersion relation: $u_0 = e^{ik \cdot x - i\omega t} \Rightarrow$

$$A^{hom}k\cdot k = \beta(\omega)$$

Since A^{hom} positive definite, iff $\beta(\omega) > 0$ waves propagate in **any** direction (iff $\beta(\omega) < 0$ no propagation in any direction \iff Band gap).

'Frequency' gaps and time-nonlocality (memory):

$$-\mathrm{div}_{x}(A^{hom}\nabla u_{0}(x)) = \beta(\omega)u_{0}(x)$$

(macroscopic) Dispersion relation: $u_0 = e^{ik \cdot x - i\omega t} \Rightarrow$

$$A^{hom}k\cdot k = \beta(\omega)$$

Since A^{hom} positive definite, iff $\beta(\omega) > 0$ waves propagate in **any** direction (iff $\beta(\omega) < 0$ no propagation in any direction \iff Band gap).

Nonlinearity (= dispersion)/ sign-changing of $\beta(\omega) \longrightarrow$ Fourier Transform $\omega \rightarrow \mathbf{t} \longrightarrow \mathbf{time-nonlocality}$ (='memory')

$$\int_{-\infty}^{t} K(t-t') u_{tt}(x,t') dt' - \operatorname{div}_{x}(A^{hom} \nabla u(x,t)) = 0.$$

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ●

'Frequency' vs "directional" gaps and 'partial' degeneracies:

'Frequency' vs "directional" gaps and 'partial' degeneracies:

A question:

Can one similarly get a spatial nonlocality? E.g. something like

$$-\operatorname{div}_{x}\left(\int_{\mathbb{R}^{n}}\mathcal{A}^{hom}(x-x')\nabla u(x',t)dx'
ight).$$

If so, via (inverse) Fourier Transform $\mathbf{x} \longrightarrow \mathbf{k}$, we can, in particular, similarly expect a "spatial" dispersion/ 'negativity'/ 'gaps'.

'Frequency' vs "directional" gaps and 'partial' degeneracies:

A question:

Can one similarly get a spatial nonlocality? E.g. something like

$$-\operatorname{div}_{x}\left(\int_{\mathbb{R}^{n}}\mathcal{A}^{hom}(x-x')\nabla u(x',t)dx'
ight).$$

If so, via (inverse) Fourier Transform $\mathbf{x} \longrightarrow \mathbf{k}$, we can, in particular, similarly expect a "spatial" dispersion/ 'negativity'/ 'gaps'.

Yes, we can: e.g. $t \longrightarrow x_{n+1}$ then $\omega \longrightarrow k_{n+1}$ etc, \downarrow

'Frequency' vs "directional" gaps and 'partial' degeneracies Cherednichenko, V.S., Zhikov (2006): spatial nonlocality for homogenised limit with highly anisotropic fibers.

$$egin{array}{lll} a^arepsilon(x) = \ & \left\{ egin{array}{lll} \sim & 1 & ext{in} \ Q_1 \ (ext{matrix}) \ \sim & arepsilon^2 & ext{in} \ Q_0 \ ext{"across" fibers} \ \sim & 1 & ext{in} \ Q_0 \ ext{"along" fibers} \end{array}
ight.$$

Valery Smyshlyaev (University College Londol High-contrast homogenization of high-contra

'Frequency' vs "directional" gaps and 'partial' degeneracies Cherednichenko, V.S., Zhikov (2006): spatial nonlocality for homogenised limit with highly anisotropic fibers.

$$a^{\varepsilon}(x) = \begin{cases} \sim 1 & \text{in } Q_1 \text{ (matrix)} \\ \sim \varepsilon^2 & \text{in } Q_0 \text{ "across" fibers} \\ \sim 1 & \text{in } Q_0 \text{ "along" fibers} \end{cases}$$

Then (after uncoupling the two-scale limit system) there is an additional spatially nonlocal macroscopic term "along the fibers" (x_3 -direction), of the form

$$-\frac{\partial}{\partial x_3}\left(\int_{\mathbb{R}}\mathcal{A}^{hom}(x_3-x_3')\frac{\partial}{\partial x_3}u(x_1,x_2,x_3',t)dx_3'\right).$$

'Frequency' vs "directional" gaps and 'partial' degeneracies Cherednichenko, V.S., Zhikov (2006): spatial nonlocality for homogenised limit with highly anisotropic fibers.

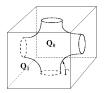
$$a^{\varepsilon}(x) = \begin{cases} \sim 1 & \text{in } Q_1 \text{ (matrix)} \\ \sim \varepsilon^2 & \text{in } Q_0 \text{ "across" fibers} \\ \sim 1 & \text{in } Q_0 \text{ "along" fibers} \end{cases}$$

Then (after uncoupling the two-scale limit system) there is an additional spatially nonlocal macroscopic term "along the fibers" (x_3 -direction), of the form

$$-\frac{\partial}{\partial x_3}\left(\int_{\mathbb{R}}\mathcal{A}^{hom}(x_3-x_3')\frac{\partial}{\partial x_3}u(x_1,x_2,x_3',t)dx_3'\right).$$

Notice, in the above fibres, $a^{\varepsilon}(x) = a^{(1)}(x/\varepsilon) + \varepsilon^2 a^{(0)}(x/\varepsilon)$, where $a^{(1)} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, i.e. is partially degenerate.

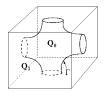
Macroscopic "directional" vs frequency gaps More generally (V.S. 2009; Linear Elasticity case:)



$$\mathcal{C}^{\varepsilon}\left(x
ight)=\left\{egin{array}{cc} C^{1}(x/arepsilon), & x\in Q_{1}^{arepsilon}\ arepsilon^{2}C^{0}(x/arepsilon)+C^{2}(x/arepsilon), & x\in Q_{0}^{arepsilon}\end{array}
ight.,$$

with (as quadratic forms on symmetric matrices) C^1 , $C^0 > \nu I$; but $C^2 \ge 0$ (i.e. possibly 'partially degenerate').

Macroscopic "directional" vs frequency gaps More generally (V.S. 2009; Linear Elasticity case:)



$$\mathcal{C}^{\varepsilon}\left(x
ight)=\left\{egin{array}{cc} \mathcal{C}^{1}(x/arepsilon), & x\in Q_{1}^{arepsilon}\ arepsilon^{2}\mathcal{C}^{0}(x/arepsilon)+\mathcal{C}^{2}(x/arepsilon), & x\in Q_{0}^{arepsilon}\end{array}
ight.$$

with (as quadratic forms on symmetric matrices) C^1 , $C^0 > \nu I$; but $C^2 \ge 0$ (i.e. possibly 'partially degenerate').

Then **"directional gaps"** can occur (via formal asymptotic expansions): for certain frequency ranges macroscopic waves can propagate in some directions (e.g. along the fibers above) but cannot in others (e.g. orthogonal to the fibers).

Macroscopic "directional" vs frequency gaps Macroscopic Dispersion relation: $u = e^{ik\mathbf{n}\cdot\mathbf{x}-i\omega t}A$, $|\mathbf{n}| = 1, k > 0 \Rightarrow$

$$\det\left[k^{2}\left(C^{hom}(n)+\gamma(\mathbf{n},k,\omega)\right)-\omega^{2}\beta(\mathbf{n},k,\omega)\right]=0, \quad (*)$$

where $C_{ip}^{hom}(k) = C_{ijpq}^{hom}k_jk_q$ (acoustic tensor for 'half-perforated' C^{hom});

$$\gamma(\mathbf{n}, k, \omega) = \langle C^2(\mathbf{n})\zeta \rangle, \quad \beta(\mathbf{n}, k, \omega) = \langle \rho \rangle + \langle \rho_0 \zeta \rangle,$$

and $\zeta(y, \mathbf{n}, k, \omega) = \zeta_{ir} = (\zeta^r)_i$ is an elastic (partially degenerating) analog of v, with ζ^r solving in the 'soft space'

$$V = \left\{ v \in \left(H^{1}_{0,\#}(Q_{0}) \right)^{3} | C^{2} \nabla v = 0 \right\},$$
$$\int_{Q_{0}} C^{0} \nabla \zeta^{r} \cdot \nabla \eta + k^{2} C^{2}(\mathbf{n}) \zeta^{r} \cdot \eta - \omega^{2} \rho_{0} \zeta^{r} \cdot \eta \, dy =$$
$$\int_{Q_{0}} \omega^{2} \rho_{0} \eta_{r} - k^{2} C^{2}(\mathbf{n}) \eta \, dy, \quad \forall \eta \in V.$$

Examples (V.S. 2009): (*) giving a 'directional localization'.

Other examples of 'partial degeneracies':

- 'Easy to shear hard to compress' elastic inclusions:

 $\mu_i \sim \varepsilon^2$, $\lambda_i \sim 1$ (Shane Cooper, 2013.)

- Photonic crystal fibers for a 'near critical' propagation constant (S. Cooper, I. Kamotski, V.S.: arxiv 2014).

- 3-D Maxwell with high electric permittivity (non-magnetic) inclusions (Cherednichenko, Cooper, 2015): $\epsilon_i \sim \varepsilon^{-2}$

Other examples of 'partial degeneracies':

- 'Easy to shear hard to compress' elastic inclusions:

 $\mu_i \sim \varepsilon^2$, $\lambda_i \sim 1$ (Shane Cooper, 2013.)

- Photonic crystal fibers for a 'near critical' propagation constant (S. Cooper, I. Kamotski, V.S.: arxiv 2014).

- 3-D Maxwell with high electric permittivity (non-magnetic) inclusions (Cherednichenko, Cooper, 2015): $\epsilon_i \sim \varepsilon^{-2}$

Some interesting effects in all the above, due to the 'partial degeneracies'.

Analysis: General 'Partial' Degeneracies (I. Kamotski and V.S., a special issue in memory of V.V. Zhikov, *Applicable Analysis*, 2018)

$$\begin{array}{l} \Omega \subset \mathbb{R}^d, \ \lambda > 0, \\ -\operatorname{div} \left(a^{\varepsilon}(x) \nabla u^{\varepsilon} \right) + \lambda \rho^{\varepsilon} u^{\varepsilon} = f^{\varepsilon} \in L^2(\Omega), \\ u^{\varepsilon} \in \left(H^1_0(\Omega) \right)^n, \ n \geq 1. \end{array}$$

Consider a resultiont problem.

A general degeneracy:

$$\begin{aligned} a^{\varepsilon}(x) &= a^{(1)}\left(\frac{x}{\varepsilon}\right) + \varepsilon^{2} a^{(0)}\left(\frac{x}{\varepsilon}\right), a^{(l)} \in \left(L^{\infty}_{\#}(Q)\right)^{n \times d \times n \times d}, a_{ijpq} = a_{pqij}; \\ a^{(1)}_{ijpq}(y)\zeta_{ij}\zeta_{pq} &\geq 0, \forall \zeta \in \mathbb{R}^{n \times d}; \ a^{(1)} + a^{(0)} > \nu I : (\text{"strong ellipticity"}) \\ \int_{\mathbb{R}^{d}} (a^{(1)} + a^{(0)})(y)\nabla w \cdot \nabla w \geq \nu \|\nabla w\|^{2}_{L^{2}(\mathbb{R}^{d})}, \ \forall w \in H^{1}(\mathbb{R}^{d}). \\ \rho^{\varepsilon}(x) &= \rho\left(\frac{x}{\varepsilon}\right), \rho \in \left(L^{\infty}_{\#}(Q)\right)^{n \times n}, \rho_{ij} = \rho_{ji}, \ \rho > \nu I. \end{aligned}$$

Two-scale formal asymptotic expansion: $u^{\varepsilon}(x) \sim u^{0}(x, x/\varepsilon) + \varepsilon u^{1}(x, x/\varepsilon) + \dots u^{j}(x, y) Q - periodic in y.$

Two-scale formal asymptotic expansion:

$$u^{\varepsilon}(x) \sim u^{0}(x, x/\varepsilon) + \varepsilon u^{1}(x, x/\varepsilon) + \dots u^{j}(x, y) \ Q - periodic in y.$$

Then $a^{(1)}(y) \nabla_{y} u^{0}(x, y) = 0.$
 $\longleftrightarrow u^{0}(x, \cdot) \in V := \{ u(u) : a^{(1)}(y) \nabla_{y} u^{0}(x, y) = 0 \}$

Weak formulation:

$$\begin{split} \int_{\Omega} & \left[a^{(1)} \left(\frac{x}{\varepsilon} \right) \nabla u \cdot \nabla \phi(x) + \varepsilon^2 \, a^{(0)} \left(\frac{x}{\varepsilon} \right) \nabla u \cdot \nabla \phi(x) + \lambda \, \rho^{\varepsilon}(x) \, u \cdot \phi(x) \right] dx \\ & = \int_{\Omega} f^{\varepsilon}(x) \cdot \phi(x) \, dx, \ \forall \phi \in \left(H^1_0(\Omega) \right)^d. \end{split}$$

Valery Smyshlyaev (University College Londo, High-contrast homogenization of high-contra

2

< □ > < □ > < □ > < □ > < □ >

Two-scale formal asymptotic expansion:

$$u^{\varepsilon}(x) \sim u^{0}(x, x/\varepsilon) + \varepsilon u^{1}(x, x/\varepsilon) + \dots u^{j}(x, y) \ Q - periodic in y.$$

Then $a^{(1)}(y) \nabla_{y} u^{0}(x, y) = 0.$
 $\longleftrightarrow u^{0}(x, \cdot) \in V := \{ u(u) : a^{(1)}(y) \nabla_{y} u^{0}(x, y) = 0 \}$

Weak formulation:

$$\begin{split} \int_{\Omega} & \left[a^{(1)} \left(\frac{x}{\varepsilon} \right) \nabla u \cdot \nabla \phi(x) + \varepsilon^2 \, a^{(0)} \left(\frac{x}{\varepsilon} \right) \nabla u \cdot \nabla \phi(x) + \lambda \, \rho^{\varepsilon}(x) \, u \cdot \phi(x) \right] dx \\ & = \int_{\Omega} f^{\varepsilon}(x) \cdot \phi(x) \, dx, \ \forall \phi \in \left(H^1_0(\Omega) \right)^d. \end{split}$$

A priori estimates:

$$\|u^{\varepsilon}\|_{2} \leq C \|f^{\varepsilon}\|_{2}, \quad \|\varepsilon \nabla u^{\varepsilon}\|_{2} \leq C \|f^{\varepsilon}\|_{2}, \quad \left\| \left(a^{(1)}(x/\varepsilon)\right)^{1/2} \nabla u^{\varepsilon} \right\|_{2} \leq C \|f^{\varepsilon}\|_{2}.$$

Let
$$||f^{\varepsilon}||_2 \leq C$$
.

Valery Smyshlyaev (University College Londo, High-contrast homogenization of high-contra

2

A D N A B N A B N A B N

Weak two-scale limits. Key assumption on the degeneracy Introduce

$$\boldsymbol{V} := \left\{ \boldsymbol{v} \in \left(H^1_{\#}(\boldsymbol{Q}) \right)^n \middle| a^{(1)}(\boldsymbol{y}) \nabla_{\boldsymbol{y}} \boldsymbol{v} = \boldsymbol{0} \right\}$$

(subspace of "microscopic oscillations"), and

$$W := \left\{ \psi \in \left(L^{2}_{\#}(Q) \right)^{n \times d} \mid \operatorname{div}_{y} \left(\left(a^{(1)}(y) \right)^{1/2} \psi(y) \right) = 0 \text{ in } \left(H^{-1}_{\#}(Q) \right)^{n} \right\}$$

("microscopic fluxes")

Then, up to a subsequence, $u^{\varepsilon} \stackrel{2}{\rightharpoonup} u_0(x, y) \in L^2(\Omega; \mathbf{V})$

$$\begin{split} \varepsilon \nabla u^{\varepsilon} & \stackrel{2}{\rightharpoonup} & \nabla_{y} u_{0}(x,y) \\ \xi^{\varepsilon}(x) &:= \left(a^{(1)}(x/\varepsilon)\right)^{1/2} \nabla u^{\varepsilon} & \stackrel{2}{\rightharpoonup} & \xi_{0}(x,y) \in L^{2}(\Omega; \ensuremath{\mathcal{W}}). \end{split}$$

Weak two-scale limits. Key assumption on the degeneracy Introduce

$$\boldsymbol{V} := \left\{ \boldsymbol{v} \in \left(H^1_{\#}(\boldsymbol{Q}) \right)^n \middle| a^{(1)}(\boldsymbol{y}) \nabla_{\boldsymbol{y}} \boldsymbol{v} = \boldsymbol{0} \right\}$$

(subspace of "microscopic oscillations"), and

$$W := \left\{ \psi \in \left(L^{2}_{\#}(Q) \right)^{n \times d} \mid \operatorname{div}_{y} \left(\left(a^{(1)}(y) \right)^{1/2} \psi(y) \right) = 0 \text{ in } \left(H^{-1}_{\#}(Q) \right)^{n} \right\}$$

("microscopic fluxes")

Then, up to a subsequence, $u^{\varepsilon} \stackrel{2}{\rightharpoonup} u_0(x, y) \in L^2(\Omega; V)$

$$arepsilon
abla u^{arepsilon} \stackrel{2}{\rightharpoonup}
abla_y u_0(x,y)$$

 $\xi^{arepsilon}(x) := \left(a^{(1)}(x/arepsilon)
ight)^{1/2}
abla u^{arepsilon} \stackrel{2}{\rightharpoonup} \xi_0(x,y) \in L^2(\Omega; W).$

Key assumption:

There exists a constant C > 0 such that for all $v \in \left(H^1_{\#}(Q)\right)''$ there is $v_1 \in V$ with $\|v - v_1\|_{(H^1_u(Q))^n} \leq C \|a^{(1)}(y)\nabla_y v\|_{L^2}$ (*) June 18, 2018 23 / 38

Valery Smyshlyaev (University College Londo: High-contrast homogenization of high-contra

The key assumption examples (more in KS'2018):

The key assumption (*) holds for most of the previously considered cases:

1. Classical homogenization: $a^{(1)}(y) \ge \nu > 0 \implies V = \{v = \text{const}\} \implies (*) \iff \text{Poincare inequality}$ with the mean: $\|v - \langle v \rangle\|_{(H^1_{\#}(Q))^n} \le C \|\nabla_y v\|_{L^2(Q)}$

2. Double porosity models: $a^{(1)}(y) = \chi_1(y)$ (characteristic function on 'connected' phase Q_1). $\Rightarrow V = \{v = \text{const} + H_0^1(Q_0)\} \Rightarrow (*) \iff$ Extension lemma: $\exists v_1 \in H_0^1 \text{ s.t. } \|v - v_1\|_{(H_{\#}^1(Q))^n} \leq C \|v\|_{H^1(Q_1)}$

3. Elasticity; 'half-soft' inclusions (Cooper 2013). $V = \{v = \text{const}^3 + (H_0^1(Q_0))^3 : \text{div } v = 0\} \implies (*) \iff \text{'Modification'}$ lemma (with a prescribed divergence): $\exists v_1 \in H_0^1(Q_0)$ s.t. $\text{div } v_1 = 0$ and $\|\nabla(v - v_1)\|_{(L^2(Q))^n} \le C (\|\nabla v\|_{L^2(Q_1)} + \|\text{div } v\|_{L^2(Q_0)})$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

The key assumption examples (continued)

4. Elasticity with stiff fibers/ grains (cf. M. Bellieud, SIAM J Math Anal 2010): d = n = 3,

Single stiff cylindrical fiber: $Q_1 = \hat{Q}_1 \times [0,1), \ \overline{\hat{Q}_1} \subset [0,1)^2.$

$$V = \left\{ v \in \left(H^1_{\#}(Q) \right)^3 : v(y) = c + \alpha y \times e_3 \text{ in } Q_1; \ c \in \mathbb{R}^3, \alpha \in \mathbb{R} \right\}$$

(\leftrightarrow translations and rotations about the cylinder's axis).

 $v \in (H^1_{\#}(Q))^3 \mapsto \tilde{v}(y) = \tilde{c} + \tilde{\alpha}y \times e_3$, where $\tilde{c} \in \mathbb{R}^3$, $\tilde{\alpha} \in \mathbb{R}$ are such that

$$\int_{Q_1} \tilde{v} \, dy = \int_{Q_1} \tilde{v} \cdot (y \times e_3) \, dy = 0.$$

 \mapsto can choose $v_1 = v - E\tilde{v}$, where $E: \left(H^1_{\#}(Q_1)\right)^3 \rightarrow \left(H^1_{\#}(Q)\right)^3$ is a bounded extension.

Then (*) follows from a Korn-type inequality for 'periodic' cylinders. Similarly extended to several stiff fibers parallel to different axes and/ or isolated stiff grains, cf. M. Bellieud'10.

The key assumption examples (continued)

5. Photonic crystal fibers (Cooper, I. Kamotski, S.'14): $V = \left\{ v \in \left(H^{1}_{\#}(Q) \right)^{2} : v_{1,1} + v_{2,2} = v_{1,2} - v_{2,1} = 0 \text{ in } Q_{1} \right\} \text{ (cf}$ Cauchy-Riemann). $\Rightarrow (*) \iff \exists v_{1} \in V \text{ s.t.}$ $\|\nabla(v - v_{1})\|_{(L^{2}(Q))^{n}} \leq C \left(\|v_{1,1} + v_{2,2}\|_{L^{2}(Q_{1})} + \|v_{1,2} - v_{2,1}\|_{L^{2}(Q_{1})} \right)$

6. 3-D Maxwell with high contrast (cf. Cherednichenko & Cooper, 2015): $\left\{ v \in \left(H^1_{\#}(Q) \right)^3 : \text{ div } v = 0; \text{ curl } v = 0 \text{ in (simply connected}) Q_1 \right\}. \quad \Rightarrow$ $(\mathbf{\hat{*}}) \iff \exists v_1 \in V \text{ s.t.}$ $\|\nabla(v - v_1)\|_{(L^2(Q))^n} \le C \left(\|\operatorname{curl} v\|_{L^2(Q_1)} + \|\operatorname{div} v\|_{L^2(Q)} \right).$ 7. If $a^{(1)}(y) \equiv a^{(1)}$ (a constant, not depending on y), then (*) $\iff \mathcal{A}$ -quasiconvexity 'constant rank' key decomposition assumption (Fonseca-Mueller).

The two-scale Limit Operator (generally 'non-local') Let Ω be e.g. bounded Lipschitz, or $\Omega = \mathbb{R}^d$. Introduce $U \subset L^2(\Omega; V)$: $U := \left\{ u(x, y) \in L^2(\Omega; V) | \exists \xi(x, y) \in L^2(\Omega; W) \text{ s.t.}, \forall \Psi(x, y) \in C^\infty(\Omega; W), \right.$

$$\int_{\Omega} \int_{Q} \xi(x, y) \cdot \Psi(x, y) dx dy = -\int_{\Omega} \int_{Q} u(x, y) \cdot \nabla_{x} \cdot \left(\left(a^{(1)}(y) \right)^{1/2} \Psi(x, y) \right)$$

Define $T : U \to L^2(\Omega; W)$ by $Tu := \xi$. Then, $\xi_0 = Tu_0$, and

Theorem (Strong two-scale ('pseudo'-)resolvent convergence): Let $f^{\varepsilon} \xrightarrow{2} f_0(x, y)$. Then $u^{\varepsilon} \xrightarrow{2} u_0(x, y)$, uniquely solving: Find $u_0 \in U$ such that $\forall \phi \in U$

$$\int_{\Omega}\int_{Q}\left\{ Tu_{0}(x,y)\cdot T\phi_{0}(x,y) + a^{(0)}(y)\nabla_{y}u_{0}(x,y)\cdot \nabla_{y}\phi_{0}(x,y) + \right.$$

$$+\lambda \rho(y)u_0(x,y)\cdot \phi_0(x,y) \bigg\} dy \, dx = \int_{\Omega} \int_{Q} f_0(x,y)\cdot \phi_0(x,y) \, dy \, dx.$$

Two-scale limit self-adjoint operator

The above defines a self-adjoint two-scale limit operator A^0 in Hilbert space H = closure of U in $L^2_{\rho}(\Omega \times Q)$, with domain $D(A^0) \subset U$:

$$D(A^{0}) = \{u(x,y) \in U : \exists w \in H \, s.t. \, \beta(u,v) = (w,v)_{H} \, \forall v \in U\};\$$

$$\beta(u,v) := \int_{\Omega} \int_{Q} Tu(x,y) \cdot \overline{Tv(x,y)} + a^{(0)}(y) \nabla_{y} u(x,y) \cdot \overline{\nabla_{y} v(x,y)} \, dy \, dx$$

Crudely, $A^0 u = T^*T - div_y (a^{(0)}(y)\nabla_y u)$,

$$T^*T = -P_V \operatorname{div}_x \left(\left(a^{(1)}(y) \right)^{1/2} P_W \left(a^{(1)}(y) \right)^{1/2} \nabla_x u(x,y) \right),$$

 $P_W = L^2$ -orthogonal projector on W (admissible micro-fluxes) \leftrightarrow solving the 'generalized' corrector problem:

$$\operatorname{div}_{y}\left(a^{(1)}(y)\left[\nabla_{x}u(x,y)+\nabla_{y}u_{1}(x,y)\right]\right) = 0,$$

 $P_v = L^2$ -orthogonal projector on V (admissible micro-fields).

Implications of the operator convergence

1. Strong two-scale convergence of spectral projectors. (Implies a 'part' of spectral convergence.)

2. Strong two-scale convergence of semigroups (a two-scale analogue of the Trotter-Kato theorem, cf. Zhikov 2000, Zh-Pastukhova 2007):

$$f^{\varepsilon} \stackrel{_2}{\to} f_0(x,y) \in H \quad \Rightarrow \quad e^{-A^{\varepsilon}t} f^{\varepsilon} \stackrel{_2}{\to} e^{-A^0t} f_0(x,y)$$

Hence, implications for hom-n of double porosity-type (parabolic) prblms:

$$\rho^{\varepsilon}(x)\frac{\partial u^{\varepsilon}}{\partial t} - \operatorname{div}\left(a^{\varepsilon}(x)\nabla u^{\varepsilon}\right) = 0, \quad u^{\varepsilon}(x,0) = f^{\varepsilon}(x),$$

If $f^{\varepsilon} \xrightarrow{2} f_0(x, y) \in H$, then the (unique) solution $u^{\varepsilon} \xrightarrow{2} u_0(x, y, t), \forall t \ge 0$, where u_0 is the unique solution of two-scale Cauchy problem:

$$\frac{\partial u_0}{\partial t} + A^0 u_0 = 0, \quad u_0(x, y, 0) = f_0(x, y), \quad (*)$$

Implications (cf e.g. Khruslov & Co 1990s; Zhikov 2000): The limit system (*) holds under most general assumptions, and may generally give macroscopic (multi-phase) 'flows' coupled by not only temporal nonlocality (= memorv) but also a 'spatial' one. イロト イポト イヨト イヨト 二日 June 18, 2018 29 / 38

Implications of the operator convergence (continued)

2'. Strong two-scale convergence of *hyperbolic* semigroups (cf. Pastukhova 2005):

Implications for homogenisation of degenerating hyperbolic problems:

$$\rho^{\varepsilon}(x)\frac{\partial^{2}u^{\varepsilon}}{\partial t^{2}} - \operatorname{div}\left(a^{\varepsilon}(x)\nabla u^{\varepsilon}\right) = 0, \ u^{\varepsilon}(x,0) = f^{\varepsilon}(x), \ u^{\varepsilon}_{t}(x,0) = g^{\varepsilon}(x),$$

$$f^{\varepsilon} \in H^{1}_{0}, \ g^{\varepsilon} \in L^{2}. \text{ If (for example) } f^{\varepsilon} \xrightarrow{2} f_{0}(x,y) \in U, \ g^{\varepsilon} \xrightarrow{2} g_{0}(x,y) \in H,$$
and
$$\lim_{\varepsilon \to 0} \int_{\Omega} a^{\varepsilon}(x)\nabla f^{\varepsilon} \cdot \nabla f^{\varepsilon} < \infty,$$

then, for T > 0, the (unique) solution $u^{\varepsilon} \stackrel{2}{\longrightarrow} u^{0}(x, y, t)$ in $L^{2}(0, T; L^{2}(\Omega))$, where u^{0} is the unique solution of two-scale Cauchy problem problem:

$$\frac{\partial^2 u^0}{\partial t^2} + A^0 u^0 = 0, \quad u^0(x, y, 0) = f_0(x, y), \quad u^0_t(x, y, 0) = Pg_0(x, y).$$

Examples with the key assumption (*) **not** held Cherednichenko, V.S., Zhikov (2006): highly anisotropic fibers.

$$a^{\varepsilon}(x) = \begin{cases} \sim 1 & \text{in } Q_1 \text{ (matrix)} \\ \sim \varepsilon^2 & \text{in } Q_0 \text{ "across" fibers} \\ \sim 1 & \text{in } Q_0 \text{ "along" fibers} \end{cases}$$
Here $d = 3, n = 1, Q_0 = \hat{Q}_0 \times [0, 1), \overline{\hat{Q}_0} \subset [0, 1]^2;$

$$a^{(1)}(y) = \chi_1(y)I + \chi_0(y) \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \alpha \end{pmatrix}, \quad \alpha > 0.$$
Then
$$V = \left\{ v(y) \in H^1_{\#}(Q) : v(y) = c + \tilde{v}(\tilde{y}), \ c \in \mathbb{R}, \ \tilde{v} \in H^1_0(\hat{Q}_0), \ \tilde{y} = (y_1, y_2) \right\}$$
One can then see that (*) is not held, for e.g.
$$v_n(y) = v_0(\tilde{y}) \sin(ny_1) \cos(2\pi y_3), \ \tilde{v} \in H^1_0(\hat{Q}_0), \ \text{when } n \to \infty.$$
However the two-scale (pseudo-) resolvent convergence is still held
$$(SZ' 06) \text{ win two scale convergence with respect to measures}$$

$$d\mu_{\varepsilon} = \chi_1(x/\varepsilon) dx$$
, cf. Zhikov'00.

Valery Smyshlyaev (University College Londo: High-contrast homogenization of high-contra

June 18, 2018 31 / 38

On the spectral convergence

The strong (two-scale) resolvent convergence implies: $\lambda_0 \in \sigma(A^0) \implies \exists \lambda^{\varepsilon} \in \sigma(A^{\varepsilon}) \text{ such that } \lambda^{\varepsilon} \to \lambda_0.$

The converse property (spectral compactness) is often desired: if $\lambda^{\varepsilon} \in \sigma(A^{\varepsilon})$ such that $\lambda^{\varepsilon} \to \lambda_0$ then $\lambda_0 \in \sigma(A^0)$.

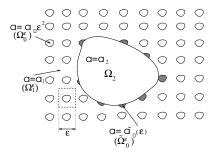
It does not hold in general. However it holds in some particular cases (which then has to be established by separate means), e.g.

- Isolated 'soft' inclusions (Zhikov 2000, 2001).

- Isolated soft elastic inclusions, icluding 'semisoft (soft in shear, stiff in compression; Cooper 2013)

Examples when it does not hold, often correspond to an 'inter-connected' soft phase, keeping supporting as $\varepsilon \to 0$ (microscopically) quasi-periodic Bloch waves, not described by the adopted two-scale (i.e. *periodic* in $y = x/\varepsilon$) framework. Nevertheless, in some cases the approach can be extended to include *y*-quasi-perodic limits (e.g. in photinic crystal fibers with a pre-critical propagation, Cooper, Kamotski, V.S. 2014; 1-D scalar case. Cherednichenko, Cooper, Gienneau, 2014: 2^{11}

Error bound for localized defect in a high-contrast medium: I. Kamotski & V.S., J. Math. Sci. N.Y., 2018, Zhikov memorial issue



A spectral problem:

$$A_{\varepsilon}u^{\varepsilon}:=-\operatorname{div} a^{\varepsilon}(x)\nabla u^{\varepsilon}=\lambda_{\varepsilon}u^{\varepsilon}, \ \ u^{\varepsilon}=u^{\varepsilon}(x)$$

with a two-scale homogenized spectral problem $A^0 u^0 = \lambda^0 u^0$, $u^0 = u^0(x, y)$. Then

Error bound for localized defect in a high-contrast medium: I. Kamotski & V.S., J. Math. Sci. N.Y., 2018, Zhikov memorial issue

Then (Theorem, Kamotski & S., 2018):

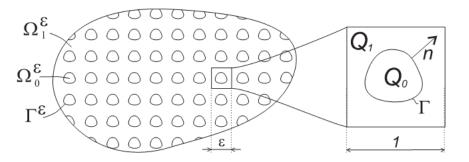
$$|\lambda_{\varepsilon} - \lambda_{0}| \leq C \varepsilon^{1/2}$$

 $||u^{\varepsilon} - u^{0}||_{L^{2}} \leq C \varepsilon^{1/2}$

The latter, in combination with the results of M. Cherdantsev (2009) on two-scale resolvent convergence for this problem and a two-scale spectral compactness (provided no 'resonant' boundary cut inclusions).

Further annoncement: operator-type error bounds for generall classes of high-contrast problems (Cooper, I. Kamotski, V.S., 2018)

Dynamic problems with random micro-resonances



Let $\Omega = \mathbb{R}^3$, and $Q_0 = B_{r_0}$ (periodic balls). Consider initial value problem

$$u_{tt}^{\varepsilon} - \operatorname{div}\left(a^{\varepsilon}\left(\frac{x}{\varepsilon}
ight)
abla u^{\varepsilon}
ight) = 0, \ u^{\varepsilon}(x,0) = g(x), \ u_{t}^{\varepsilon}(x,0) = h(x),$$

g, h compactly supported/ rapidly decaying.

Valery Smyshlyaev (University College Londo: High-contrast homogenization of high-contra

Dynamic problems with random micro-resonances Let $a^{\varepsilon}(y) = \chi_1(y) + \varepsilon^2 \chi_0(y) a(\omega, m)$, $m \in \mathbb{Z}^3$ I.I.D. with a 'nice' probability density p, $\int_0^{\infty} p(a) da = 1$.

Then, formal asymptotics gives:

$$u^{\varepsilon}(x,t) \sim u^{0}(x,t) + v(x,t,x/\varepsilon;\omega),$$

with (u^0, v) coupled via:

$$u_{tt}^{0} + \langle v_{tt} \rangle_{y,\omega} - \operatorname{div} \left(A^{hom} \nabla_{x} u^{0} \right) = 0,$$

 $u_{tt}^{0} + v_{tt} - a(\omega, m) \Delta_{y} v = 0,$

where A^{hom} is a (classical) homogenized matrix for periodic perforated domain.

Formal uncoupling then gives an equation for u^0 of a form;

Valery Smyshlyaev (University College Londo, High-contrast homogenization of high-contra

Dynamic problems with random micro-resonances

$$|Q_1|u_{tt}^0(x,t) + K_1 u_t^0(x,t) - K_2 u^0(x,t) - \int_0^\infty \mathcal{K}(\tau) u^0(x,t-\tau) - \operatorname{div} \left(A^{hom} \nabla_x u^0\right) = 0 \quad (+1.C.s),$$

with rather explicit K_1 , K_2 , and $\mathcal{K}(\tau)$, with "right" signs.

Taking the Fourier/ Laplace transform $t \to \omega$ etc, seems to lead (at least within certain 'frequency ranges') to a localization-type phenomenon for $u^0(x, t)$, somewhat resembling Anderson localization:

$$\left(|Q_1|\omega^2 + iK_1\omega + K_2 + \hat{\mathcal{K}}(\omega)\right)\hat{u^0} + A^h\Delta\hat{u^0} = -\hat{f}(x,\omega)$$

Possible interpretation:

The microresonances tend to 'capture' the energy at frequencies close to their eigenfrequencies; due to their randomness, a wide range of such eigen-frequencies is represented not allowing the wave to propagate.

500

Summary:

- A critical high contrast scaling due to **"micro-resonances"** gives rise to numerous "non-classical" effects, described by two-scale limit problems.

- **'Partial' degeneracies** often happen in physical problems, and give rise to more of such effects.

- A general two-scale homogenization theory can be constructed for such partial degeneracies, under a generically held decomposition condition. Resulting limit (homogenized) operator is generically two-scale (and macroscopically 'non-local'). Strong two-scale resolvent convergence generically holds, implying convergence of semigroups, evolution problems, etc.

- Examples when the key assumption fails, however the conclusions are still held via a two-scale convergence with respect to **measures**, Zhikov 2000.

- From convergence to (high-contrast) error bounds, etc..