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QOutline:

- Classical vs high-contrast (= ‘microresonant’) homogenization, from a
spectral theoretic point of view (re V.V. Zhikov 2000, and followers).

- Effects: band gaps, dispersion, ‘negative’ materials, etc.

- Analysis: (‘two-scale’) resolvent convergence /semigroups,/ spectral
convergence, (two-scale) compactness, etc.

- ‘Partial’ degeneracies and ‘generalised’ micro-resonances (more of
effects/ applications); A general theory for PDE systems under a generic
‘decomposition’ assumption: |. Kamotski & V.S., Applicable Analysis
2018, a special issue in memory of V.V. Zhikov.

- Failure of the above decomposition assumption vs two-scale convergence
w.r.t. measures (Zhikov 2000): example of highly anisotropic fibers from
Cherednichenko, S., Zhikov'06.

- From two-scale convergence to error bounds: Error bounds for EVs and
EFs for a defect in a high-contrast medium, Kamotski & S., J. Math. Sci
N.Y. 2018, another special issue in memory of V.V. Zhikov.

+ Some current developments.
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Classical Periodic Homogenisation (= ‘moderate’ contrast
& low frequencies)
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Classical Periodic Homogenisation (= ‘moderate’ contrast

& low frequencies)
(For example) for the wave

equation:
QE
1 O0000O0O0O00 Q1
at{e 0000060006 " p°(X)uge — div (a°(x)Vuf)) = 0in Q C R?
O0O0OO0O0O0O0O0O
re 0cococooa 1 r u(X, 0) = f(x)7 ut(x, O) = g(X) (-I—BCS)
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Classical Periodic Homogenisation (= ‘moderate’ contrast

& low frequencies)
(For example) for the wave
equation:

o (e — div (27(x)Vu7)) = 0 in © C R
! u(x,0) = f(x), u(x,0) = g(x) (+BCs)

a(y), p(y) Q-periodic in y;
Q =[0,1]9 unit cube.
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& low frequencies)
(For example) for the wave
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o (e — div (27(x)Vu7)) = 0 in © C R
! u(x,0) = f(x), u(x,0) = g(x) (+BCs)
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0<v<a(y), ply) <v=! (uniformly positive, bounded)
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Classical Periodic Homogenisation (= ‘moderate’ contrast

& low frequencies)
(For example) for the wave
equation:

p°(X)uge — div (a°(x)Vef)) =0in Q C RY
- u(x,0) = f(x), ue(x,0) = g(x) (+BCs)

a(y), p(y) Q-periodic in y;
Q =[0,1]9 unit cube.

0<v<a(y), ply) <v=! (uniformly positive, bounded)

Asymptotic expansion:

ue(x, t) ~ u0(x, x/e, t) + eul(x, x/e, t) + 2u?(x, x /e, t) +
uO(x,y,t), ut(x,y,t),... Q-periodiciny
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Classical Periodic Homogenisation

e2: ¥ =u(x,t) (= 'long wavelengths’ = ‘low frequencies’)
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Classical Periodic Homogenisation

e 2 W =u(xt) ( = ‘Iong wavelengths' = ‘low frequencies’)
A=
J
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Classical Periodic Homogenisation

e W =u(xt) ( = ‘Iong wavelengths' = ‘low frequencies’)
A=
J

N solutions of “cell problem” div, (a(y)(ej +VyN;)) =0
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Classical Periodic Homogenisation

e W =u(xt) ( = ‘Iong wavelengths' = ‘low frequencies’)
A=
J

N solutions of “cell problem” div, (a(y)(ej +VyN;)) =0
€2 phomyd — div (ahomVu0)> = f(x), homogenized eqn

Valery Smyshlyaev (University College Londol High-contrast homogenization of high-contra June 18, 2018 4/38



Classical Periodic Homogenisation

e W =u(xt) ( = ‘Iong wavelengths’ = ‘low frequencies')
A=
J

N solutions of “cell problem” div, (a(y)(ej +VyN;)) =0
€2 phomyd — div (ah"mVuO)) = f(x), homogenized eqn

phem = (p(y)), homogenised (averaged) density

am = (a(y) (I + VyN)), homogenised stiffness tensor
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Classical Periodic Homogenisation

e W =u(xt) ( = ‘Iong wavelengths’ = ‘low frequencies')
A=
J
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€2 phomyd — div <ah°mVu0)) = f(x), homogenized eqn

phem = (p(y)), homogenised (averaged) density
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0 < wl < aMom phom < =1/ (uniform positivity inherited)
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Classical Periodic Homogenisation

e W =u(xt) ( = ‘Iong wavelengths' = ‘low frequencies')
A=
J

N solutions of “cell problem” div, (a(y)(ej +VyN;)) =0
€2 phomyd — div (ah"mVuo)) = f(x), homogenized eqn
phem = (p(y)), homogenised (averaged) density
am = (a(y) (I + VyN)), homogenised stiffness tensor
0 < wl < aMom phom < =1/ (uniform positivity inherited)

The Homogenisation Theorem
The solution u®(x, t) of the original problem converges, in appropriate

norms, to the solution up(x, t) of the homogenised problem, as ¢ — 0.
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Spectral Theory point of view: resolvent convergence
A®u = —div (a°(x)Vu) is a non-negative self-adjoint operator in Hilbert
space H = L?(Q); Q e.g. bounded Lipschitz (with Dirichlet or Neumann
B.C.) or Q = RY.

Let A > 0 and let u® € H3(Q) be the unique solution of
—div (a*(x)Vu®) + A =f°  — u° = R5f°,
R; = (A° + Al)™! the resolvent. Then

(classical) Theorem (weak/ strong resolvent convergence):
Let ¢, fy € L?(Q), ¢ — fy weakly/ strongly in L2. Then YA > 0,

R5fe — RI°™fy  (weakly/ strongly in L?),

where R;\"’m = (Ah"m + )\I)_1 is the resolvent of the homogenised
(non-negative, self-adjoint) operator A™°™ = —div (a"°mV ).

N.B. In fact, for Q@ = R or Q bounded C'! a (much) stronger operator
convergence with an estimate holds, Birman & Suslina > 2000.
RS — RY™

< Ce.

L2—12
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Classical periodic homogenisation: Implications of the
resolvent convergence

The strong resolvent convergence implies:

- Strong convergence of spectral projectors;

- Strong convergence of (parabolic) semigroups (Trotter-Kato theorem),
and hence of associated parabolic Cauchy problems;

- Convergence of hyperbolic semigroups (and hence of hyperbolic Cauchy
problems);

- 'Part of' Hausdorff convergence of spectra:

Ao € o(AhPm) = 3\ € o(A°) such that A — A°.

Additionally, often (if e.g. Q bounded Dirichlet), ‘spectral compactness’
holds (by separate means):

N eo(A)and X = Ng = A € a(AM™).

(Implying hence a ‘full’ convergence of spectra.)
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High-contrast homogenization and ‘non-classical’ two-scale
limits (Zhikov 2000, 2004)

ol 000000008 € . € 15
. /000000000 Qn Afu = —div (a°(x)Vur)
Q ooooocooo . ,
rag 0000000D - #(x) = d on g (‘soft’ phase)
20000060 1 on Qf (‘stiff’ phase)
oo oy 1
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High-contrast homogenization and ‘non-classical’ two-scale
limits (Zhikov 2000, 2004)

ol 000000008 € . € €

. /000000000 Qn Afu = —div (a°(x)Vif)

Q O000O0O0Iboo ‘ '

"\0000000005 r i | 0 on Qg (‘soft’ phase)

P\goooo0p (x) = 1 on Qf (‘stiff’ phase)
oo . 1 1 p

Contrast 0 ~ £ is a critical scaling giving rise to ‘non-classical’ effects
(Khruslov 1980s; Arbogast, Douglas, Hornung 1990; Panasenko 1991;
Allaire 1992; Sandrakov 1999; Brianne 2002; Bourget, Mikelic, Piatnitski
2003; Bouchitte & Felbaq 2004, ...): elliptic, spectral, parabolic,
hyperbolic, nonlinear, non-periodic/ random, ... .
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High-contrast homogenization and ‘non-classical’ two-scale
limits (Zhikov 2000, 2004)

ol 000000008 € . € €

. /000000000 Qn Afu = —div (a°(x)Vif)

Q O000O0O0Iboo ‘ '

"\0000000005 r i | 0 on Qg (‘soft’ phase)

P\goooo0p (x) = 1 on Qf (‘stiff’ phase)
oo . 1 1 p

Contrast 0 ~ £ is a critical scaling giving rise to ‘non-classical’ effects
(Khruslov 1980s; Arbogast, Douglas, Hornung 1990; Panasenko 1991;
Allaire 1992; Sandrakov 1999; Brianne 2002; Bourget, Mikelic, Piatnitski
2003; Bouchitte & Felbaq 2004, ...): elliptic, spectral, parabolic,
hyperbolic, nonlinear, non-periodic/ random, ... .

WHY?
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The critical scaling: § ~ &2

e High contrast: a;/am =: 0 < 1, pj ~ pm (for simplicity)
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The critical scaling: § ~ &2

e High contrast: a;/am =: 0 < 1, pj ~ pm (for simplicity)

puy — div(aVu) = 0
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The critical scaling: § ~ &2

e High contrast: aj/am =: 0 < 1, pj ~ pm (for simplicity)
puy — div(aVu) = 0

For a, p constant — dispersion relation: u = ek*x=iwt —
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The critical scaling: § ~ &2

e High contrast: aj/am =:6 < 1, p; ~ pm (for simplicity)
puy — div(aVu) = 0
For a, p constant — dispersion relation: u = elkx—iwt
—p? +alkP =0 = [k = (p/a)" 2w

= Wavelength: X = 27/|k| = 2n(a/p)*/?w™?
= Am/Ai ~ (am/ai) /2 =612 >1
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= Wavelength: X = 27/|k| = 2n(a/p)*/?w™?
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The critical scaling: § ~ &2

e High contrast: aj/am =:6 < 1, p; ~ pm (for simplicity)
puy — div(aVu) = 0
For a, p constant — dispersion relation: u = elkx—iwt
—p? +alkP =0 = [k = (p/a)" 2w

= Wavelength: X = 27/|k| = 2n(a/p)*/?w™?
= Am/Ai ~ (am/ai) /2 =612 >1

@ Resonant inclusions: \; ~ €.

L o §~¢g?

® Ay ~ 1 ( Macroscale) = Ap/Ai~e™
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£2 on Qf (inclusions)
€ — 0
F(x) = { 1 on Q5 (matrix)

Two-scale formal asymptotic expansion:

div (a°(x)Vu®) + Apu® = 0 (time harmonic waves)

= A = \uf, A= pw? (spectral problem):

Seek wuf(x) ~ u®(x,x/c) +eut(x,x/e) + ... (x,y) Q-periodicin y.
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£2 on Qf (inclusions)
€ — 0
F(x) = { 1 on Q5 (matrix)

Two-scale formal asymptotic expansion:

div (a°(x)Vu®) + Apu® = 0 (time harmonic waves)

= A = \uf, A= pw? (spectral problem):

Seek wuf(x) ~ u®(x,x/c) +eut(x,x/e) + ... (x,y) Q-periodicin y.

THEN:
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Two-scale limit problem (Zhikov 2000, 2004)
Then

1

up(x) in Q@ (still low frequency)
u¥(x,y) = @

w(x,y) in Qo (‘resonance’ frequency)
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Two-scale limit problem (Zhikov 2000, 2004)
Then

]

up(x) in Q@ (still low frequency)
u¥(x,y) = @

w(x,y) in Qo (‘resonance’ frequency)

(uo, w), w(x,y) := uo(x) + v(x, y), solves the two-scale limit spectral
problem  (¢+— A%%(x, y) = Au0):

—div, (A" 1o (x)) = Auo(x) + A(v),(x) in Q

—Ayv(x,y) = Auo(x) + v(x,¥)) in Qo
v(x,y)=0 on 9@,

AP°™ homogenized matrix for the ‘perforated’ domain;
(V)y(x) = fQ v(x,y)dy.
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Two-scale limit problem (Zhikov 2000, 2004)
Then

]

up(x) in Q@ (still low frequency)
u¥(x,y) = @

w(x,y) in Qo (‘resonance’ frequency)

(uo, w), w(x,y) := uo(x) + v(x, y), solves the two-scale limit spectral
problem  (¢+— A%%(x, y) = Au0):

—div, (A" 1o (x)) = Auo(x) + A(v),(x) in Q

—Ayv(x,y) = Auo(x) + v(x,¥)) in Qo
v(x,y)=0 on 9@,

AP°™ homogenized matrix for the ‘perforated’ domain;
(V)y(x) = fQ v(x,y)dy.

Uncouple it |
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Two-scale limit spectral problem
Decouple by choosing v(x,y) = Aug(x)b(y)

—Ayb(y) — Ab=1 in Qo
b(y)=0 on 0@

—divy (AP up(x)) = B(N)ug(x), in Q,

00 N2
where B(\) = A+ 2%(b) = A + \? M,
— N\ — A
j=1
(A, ¢j) Dirichlet eigen-values/functions of —A, in inclusion Qo ( =
“micro-resonances”): 3 < 0: band gaps (Zhikov 2000);
B(A) = p(w) < 0 <— “negative density/ magnetism” (Bouchitté &
Felbacq, 2004), etc.

B
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Analysis: Two-scale Convergence
Definition
1. Let u.(x) be a bounded sequence in L2(2). We say (u.) weakly

two-scale converges to ug(x,y) € L?(Q x @), denoted by u. 2 up, if for
all ¢ € (5°(Q2), ¥ € CF(Q)

09009 (X) x — [ [t 1oty axdy

ase — 0.
2. We say (u.) strongly two-scale converges to ug € L?(Q x Q), denoted

by u. 2 up, if for all vz 2 vo(x,y).

[ ettgax— | /Q o(x, y)volx, ¥) dxdy

as ¢ — 0. (implies convergence of norms upon sufficient regularity)
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Analysis (Zhikov 2000, 2004):

1. Two-scale limit operator:
A self-adjoint in H C L?(Q x @), with a band-gap spectrum o (Ay). J

H= L2 (Q; C+ LQ(QO)). The (closed, non-negative, densely defined) form
for Ag on
U= {u(x,y) = uo(x) + v(x,y) : up € H}(Q), v € L2(; H}(Qo)} C H:

B(u, u):/Ah°mVXuo.quodx+// |Vyv(x,y)|2 dy dx,
Q QJ Qo

with domain D(Ag) C U.
Then, e.g. for Q = RY the spectrum of A° is:

a(A%) = {A>0:B(\) > 0} U2, AP(Qo)

Valery Smyshlyaev (University College Londol High-contrast homogenization of high-contra June 18, 2018 13 /38



Analysis (Zhikov 2000, 2004):

2. Two-scale (‘pseudo’-)resolvent convergence:
VA >0, AW+ Af = el?Q); v e HYR).

If £ 2 fo(x,y) then u® 2 up(x,y). (If ¢ 2 fo(x,y)then u® 2 up(x,y).)
Here up solves “two-scale limit resolvent problem” Agug + Aug = Pyfy.
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Analysis (Zhikov 2000, 2004):
2. Two-scale (‘pseudo’-)resolvent convergence:

YAS0, AW+ =1 e lX(Q) uf € HH(Q).
If £ 2 fox, y) then u® = up(x, y)- (If £ 2 fo(x, y) then u= 2 uo(x, ).)
Here up solves “two-scale limit resolvent problem” Agug + Aug = Pyfy.

3. Spectral band gaps: (Let Q = R?) cf also Hempel & Lienau 2000

0(A%) — o(Ap) in the sense of Hausdorff. (Hence a Band-gap effect:
For small enough ¢, A® has (the smaller £ the more) gaps.

The proof follows from the above two-scale resolvent convergence

+ (additionally) “two-scale spectral compactness”.
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Limit band gaps = {\: S(A\) < 0} (Infinitely many)

Valery Smyshlyaev (University College Londol High-contrast homogenization of high-contra June 18, 2018 14 /38



Analysis (Zhikov 2000, 2004):
2. Two-scale (‘pseudo’-)resolvent convergence:

YAS0, AW+ =1 e lX(Q) uf € HH(Q).
If £ 2 f(x, y) then u® = wg(x, y). (If ££ = fo(x, ) then u= = uo(x, y).)
Here up solves “two-scale limit resolvent problem” Agug + Aug = Pyfy.

3. Spectral band gaps: (Let Q = RY) cf also Hempel & Lienau 2000

0(A%) — o(Ap) in the sense of Hausdorff. (Hence a Band-gap effect:
For small enough ¢, A® has (the smaller £ the more) gaps.

The proof follows from the above two-scale resolvent convergence

+ (additionally) “two-scale spectral compactness”.

Limit band gaps = {\: S(A\) < 0} (Infinitely many)
N.B. Cherednichenko & Cooper (Arch Rat Mech Anal 2015) have
improved the above strong two-scale resolvent convergence to an operator
convergence, with an appropriate ‘corrector’ B®:
(A +al)™t = (Ag+ B +al)™,
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‘Frequency’ gaps and time-nonlocality (memory):

—div (AP uy(x)) = B(w)ue(x)

(macroscopic) Dispersion relation: uy = et =

Ahom e | = B(w)

Since A"°™ positive definite, iff 5(w) > 0 waves propagate in any
direction ( iff 5(w) < 0 no propagation in any direction <= Band gap).

June 18, 2018 15/38
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‘Frequency’ gaps and time-nonlocality (memory):

—div (AP uy(x)) = B(w)ue(x)

(macroscopic) Dispersion relation: ug = ek x—wt =
APempe ke = B(w)

Since A"°™ positive definite, iff 5(w) > 0 waves propagate in any
direction ( iff 5(w) < 0 no propagation in any direction <= Band gap).

Nonlinearity (= dispersion)/ sign-changing of f(w) —
Fourier Transform w — t —— time-nonlocality (='memory’)

JE o K(t = uge(x, t')dt’ — dive(ArmVu(x, t)) = 0.
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‘Frequency’ vs “directional” gaps and ‘partial’
degeneracies:
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‘Frequency’ vs “directional” gaps and ‘partial’
degeneracies:

A question:

Can one similarly get a spatial nonlocality? E.g. something like

— divy (/ Ahom(x — x"\Vu(x, t)dx’> .

If so, via (inverse) Fourier Transform x — k, we can, in particular,
similarly expect a “spatial” dispersion/ ‘negativity'/ ‘gaps’.
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‘Frequency’ vs “directional” gaps and ‘partial’
degeneracies:

A question:

Can one similarly get a spatial nonlocality? E.g. something like

— divy (/ Ahom(x — x"\Vu(x, t)dx’> .

If so, via (inverse) Fourier Transform x — k, we can, in particular,
similarly expect a “spatial” dispersion/ ‘negativity'/ ‘gaps’.

Yes, we can: e.g. t —> X,411 then w — ku41 etc, |
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‘Frequency’ vs “directional” gaps and ‘partial’ degeneracies

Cherednichenko, V.S., Zhikov (2006): spatial nonlocality for
homogenised limit with highly anisotropic fibers.

a*(x) =
] ~ 1 in @ (matrix)
a | | ~ €2 in Q “across’ fibers
ke ~ 1 in Q “along” fibers
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‘Frequency’ vs “directional” gaps and ‘partial’ degeneracies

Cherednichenko, V.S., Zhikov (2006): spatial nonlocality for
homogenised limit with highly anisotropic fibers.

a(x) =
] ~ 1 in @ (matrix)
ail® |r ~ €2 in Q “across’ fibers
I ~ 1 in Q “along” fibers

Then (after uncoupling the two-scale limit system) there is an additional
spatially nonlocal macroscopic term “along the fibers” (x3-direction), of
the form

— i hom o i , )
8X3 </R A (X3 X3)8X3 U(Xl,X2,X37 t)dX3 )
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‘Frequency’ vs “directional” gaps and ‘partial’ degeneracies

Cherednichenko, V.S., Zhikov (2006): spatial nonlocality for
homogenised limit with highly anisotropic fibers.

a(x) =
] ~ 1 in @ (matrix)
ail® |r ~ €2 in Q “across’ fibers
I ~ 1 in Q “along” fibers

Then (after uncoupling the two-scale limit system) there is an additional
spatially nonlocal macroscopic term “along the fibers” (x3-direction), of
the form

- ( Ahom (s — Xé)iu(xl,xz,xé, t)dx§> .
R Ox3

Notice, in the above fibres, a°(x) = a(t)(x/e) + £2a(9)(x/e), where

0 00
a® =10 0 0|, ie ispartially degenerate.
0 01
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Macroscopic “directional” vs frequency gaps
More generally (V.S. 2009; Linear Elasticity case: )

HJFD&

Cl(x/e), x€ Q%

C(x) = { e2C%x/e) + C*(x/e), xe @5’

with (as quadratic forms on symmetric matrices) C, C° > v/; but C?> >0
(i.e. possibly ‘partially degenerate’).

Valery Smyshlyaev (University College Londol High-contrast homogenization of high-contra June 18, 2018 18 /38



Macroscopic “directional” vs frequency gaps
More generally (V.S. 2009; Linear Elasticity case: )

HJFD&

. - Cl(x/e), x€ @
()= { e2C%x/e) + C%(x/e), x¢€ Q% ’

with (as quadratic forms on symmetric matrices) C, C° > v/; but C?> >0
(i.e. possibly ‘partially degenerate’).

Then “directional gaps” can occur (via formal asymptotic expansions):
for certain frequency ranges macroscopic waves can propagate in some
directions (e.g. along the fibers above) but cannot in others (e.g.
orthogonal to the fibers). |
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Macroscopic “directional” vs frequency gaps
Macroscopic Dispersion relation: u = ek™*=/“tA |n| =1 k>0 =

det [k2 (Cho’"(n)—i—fy(n, k,w)) - wzﬁ(n,k,w)] —0, (+)

where Ci’;"’"(k) = Cijfl‘)’c’l"kjkq (acoustic tensor for ‘half-perforated’ Com);

V(nvkvw) = <C2(“)C>7 /B(n7 k7w) = <p> + <p0€>7

and ¢(y,n, k,w) = Cir = (¢"); is an elastic (partially degenerating) analog
of v, with (" solving in the ‘soft space’

V = {v € (H(}77¢((?()))3 |C?Vv = O} ,
[ €OV T KRG Py
Qo

/Q Poon, — KEC(n)ydy, Ve V.
0

Examples (V.S. 2009): (*) giving a ‘directional localization'.
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Other examples of ‘partial degeneracies':

- 'Easy to shear hard to compress’ elastic inclusions:

pi ~ €% A ~ 1 (Shane Cooper, 2013.)

- Photonic crystal fibers for a ‘near critical’ propagation constant (S.
Cooper, |. Kamotski, V.S.: arxiv 2014).

- 3-D Maxwell with high electric permittivity (non-magnetic) inclusions
(Cherednichenko, Cooper, 2015): ¢; ~ &2
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Other examples of ‘partial degeneracies':

- 'Easy to shear hard to compress’ elastic inclusions:

pi ~ €% A ~ 1 (Shane Cooper, 2013.)

- Photonic crystal fibers for a ‘near critical’ propagation constant (S.
Cooper, |. Kamotski, V.S.: arxiv 2014).

- 3-D Maxwell with high electric permittivity (non-magnetic) inclusions
(Cherednichenko, Cooper, 2015): ¢; ~ &2

Some interesting effects in all the above, due to the ‘partial degeneracies’'.
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Analysis: General ‘Partial’ Degeneracies (I. Kamotski and
V.S., a special issue in memory of V.V. Zhikov, Applicable

Analysis, 2018)

=
Q‘T\,ﬁr

A general degeneracy:

a(x) = a(l)( )+€ a(O)( ) 20 <LOO(Q)>n><d><n><d

e

Jra(a +a)()Vw - Vw > 1| Vw3 oy, YW € HE (RY).

nxXn
pPF(x)=p(%),pe (L;Z’(Q)) , pij = pjis p> vl

¥)CiiCpq > 0,¥¢ € R™9; a(1) 4 300 > ] (“strong ellipticity”
%ijpq UsPq

Consider a resolvent problem:

QcRI A>0,

—div (a°(x)Vue) + A\pfuf = f© € [2(Q),
ut € (H&(Q))n, n>1.

» dijpg = Apgqij
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Two-scale formal asymptotic expansion:
ue(x) ~ uO(x,x/e) +eut(x,x/e) + ... W(x,y) Q— periodiciny.

Valery Smyshlyaev (University College Londol High-contrast homogenization of high-contra



Two-scale formal asymptotic expansion:
ue(x) ~ uO(x,x/e) +eut(x,x/e) + ... W(x,y) Q— periodiciny.

Then  aM(y)V,u0(x,y) = 0.
— WO(x,-) € Vi={u(w) : aB(y)V,u0(x,y) = 0}

Weak formulation:

/Q[a(l)( )Vu Vo(x) + ¢ 3(0)( )Vu Vo(x) + Ap*(x) u-d(x)|d

- /Q F(x) - d(x) dx, Vo e (H3()".
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Two-scale formal asymptotic expansion:
ue(x) ~ uO(x,x/e) +eut(x,x/e) + ... W(x,y) Q— periodiciny.

Then a(l)(y)Vyuo(x,y) = 0.
— WO(x,-) € Vi={u(w) : aB(y)V,u0(x,y) = 0}

Weak formulation:

/Q{a(l) ( )Vu Vo(x) + e2a® ( )Vu Vo(x) + Apf(x)u- gf)(x):|

- /Q F(x) - d(x) dx, Vo e (H3()".

A priori estimates:

ez < CIFll2, [[eVeE]lz < CJIFe2, H(am(x/g))l/zvlf

< ClIFel2-
2

Let ||f5||2 < C.
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Weak two-scale limits. Key assumption on the degeneracy
Introduce

V= {v € (HL(Q)"| aP(y)Vyv = O}
(subspace of “microscopic oscillations”), and
wi={v e (@)™ |div, ( (901) 000 ) =0 in (1,2(@)"

(“microscopic fluxes™)

Then, up to a subsequence, u° = uo(x,y) € L3(; V)

eV 2 V,up(x,y)
£(x) = (M (x/2)2VuE 2 Go(x,y) € (W),
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Weak two-scale limits. Key assumption on the degeneracy
Introduce

V= {v € (HL(Q)"| aP(y)Vyv = 0}
(subspace of “microscopic oscillations”), and
wi={v e (@)™ |div, ( (901) 000 ) =0 in (1,2(@)"

(“microscopic fluxes™)

Then, up to a subsequence, ¥ = ug(x,y) € L2(Q; V)

eV 2 Vyu(x,y)
£5(x) = (aD(x/) 2Vur 2 go(x,y) € L3 W),
Key assumption:

There exists a constant C > 0 such that for all v € (H#(Q))n
there is vi € V with ||v — V1||(H#(Q))n < C Ha(l)(y)VvaL2 (%)
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The key assumption examples (more in KS'2018):
The key assumption (*) holds for most of the previously considered cases:

1. Classical homogenization:
a(l)(y) >v>0 = V={v=const} = (x) <= Poincare inequality
with the mean: ||v — <V>H(Hi#(o))n <C HVva,_z(Q)

2. Double porosity models: a(Y)(y) = x1(y) (characteristic function on
‘connected’ phase @1). = V = {v =const+ H}(Qo)} = (x) <
Extension lemma: Jv; € H} s.t. [|v — VlH(HL(Q))" < C[Vlip(q

3. Elasticity; ‘half-soft” inclusions (Cooper 2013).

V = {v = const3 + (H&(Qo))3  divv =0} = (¥) <= 'Modification’
lemma (with a prescribed divergence): 3vi € H}(Qo) s.t. divv; = 0 and
IV(v = vi)ll2(qy < € (||VV||L2(Q1) + [|div V||L2(Q0))
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The key assumption examples (continued)

4. Elasticity with stiff fibers/ grains (cf. M. Bellieud, SIAM J Math Anal
2010): d = n =3, B
Single stiff cylindrical fiber: Q; = Q1 x [0,1), Q1 € [0,1)%.

V:{ve (H;&(Q))3: v(y) = ¢ + ay x ez in Qq; CGR3,a€R}
(<— translations and rotations about the cylinder's axis).

3
v E <H%£(Q)> — U(y) = & + Ay x e3, where & € R3, & € R are such
that

/de:/ V-(y xe3)dy = 0.
Q1 @]

+—— can choose vi = v — EV, where E : (H#(Qﬂ)s — (H#(C)))3 is a
bounded extension.

Then (*) follows from a Korn-type inequality for ‘periodic’ cylinders.
Similarly extended to several stiff fibers parallel to different axes and/ or
isolated stiff grains, cf. M. Bellieud'10.
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The key assumption examples (continued)

5. Photonic crystal fibers (Cooper, I. Kamotski, S.'14):

V= {v € <H71§E(Q)>2 Cviit+wveo=vi2—v21=0 in Ql} (cf
Cauchy-Riemann). = (x) <= 3Jv; € V s.t.

190 = Wiz < € (I +voallizay + 2 = v2illixgay)

3-D Maxwell with high contrast (cf. Cherednichenko & Cooper, 2015):

6.
%4
{v € H1 Q) : divv = 0;curl v =0 in (simply connected)Ql} .=
( <— dvy; € V st

IV(v = v)ll 2@y < € (||curIvHL2(Q1) + ||div V||L2(Q)>'

7. 1f aM(y) = a (a constant, not depending on y), then (*)
<= A-quasiconvexity ‘constant rank’ key decomposition assumption
(Fonseca-Mueller).
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The two-scale Limit Operator (generally ‘non-local’)
Let Q be e.g. bounded Lipschitz, or Q = R?. Introduce U C L2(Q; V):

U= {u(x,y) e L?(Q;V) |3(x,y) € [2(Q; W)s.t. YW¥(x,y) € C(Q; W),

E(x,y)V(x,y)dxdy = — u(x,y) - Vi [ (aD(y) 1p"’(w) |
11, N ((#6) vten)

Define T : U — L2(; W) by Tu := £. Then, & = Tug, and

Theorem (Strong two-scale (‘pseudo’-)resolvent convergence):
Let ¢ 2 fo(x,y). Then u® 3 ug(x,y), uniquely solving:
Find up € U such that V¢ € U

/ / { Tuo(x,y) - Too(x,y) + a®()Vyuo(x,y) - Vydo(x,y) +
QJQ

+>\p(y)uO(x,y)-qbo(x,y)}dydx=AL%(x,y)-¢o(x,y)dde-

v

Valery Smyshlyaev (University College Londol High-contrast homogenization of high-contra June 18, 2018 27/38



Two-scale limit self-adjoint operator

The above defines a self-adjoint two-scale limit operator A° in Hilbert
space H = closure of U in L3(Q2 x Q), with domain D(A%) C U:

D(A%) = {u(x,y) € U : 3w e Hs.t. B(u,v) = (w, v)y Vv € U};
B(u,v) = /Q/Q Tu(x,y) - Tv(x,y) + a(o)(y)Vyu(X,y) -Vyv(x,y)dy dx

Crudely, A%y = T*T — div, (a(o)(y)Vyu),

T*T = — Pydivy ((a(l)()’))l/z Pw (3(1)(y)>1/2 qu(x,y)> ’

Py = L2-orthogonal projector on W (admissible micro-fluxes) «+—
solving the ‘generalized’ corrector problem:

divy (aD(y) [Vat(x,y) + Vyu(x ) = o0,

P, = L2-orthogonal projector on V (admissible micro-fields).
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Implications of the operator convergence
1. Strong two-scale convergence of spectral projectors. (Implies a ‘part’ of
spectral convergence.)

2. Strong two-scale convergence of semigroups (a two-scale analogue of
the Trotter-Kato theorem, cf. Zhikov 2000, Zh-Pastukhova 2007):

FF 2 hixy)e H = et 2 e thy(x,y)
Hence, implications for hom-n of double porosity-type (parabolic) prblms:
out
£
Pr(x) 5,

—div(a®(x)Vu®) = 0, u®(x,0) = f°(x),

If f¢ 2 fo(x,y) € H, then the (unique) solution u® 2 wup(x,y,t), Vt >0,
where ug is the unique solution of two-scale Cauchy problem:

ou

Ko | pouy = 0, wlx.y.0) = hix.y). (+
Implications (cf e.g. Khruslov & Co 1990s; Zhikov 2000): The limit
system (*) holds under most general assumptions, and may generally give
macroscopic (multi-phase) ‘flows’ coupled by not only temporal nonlocality

but also a ‘spatial’ one.
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Implications of the operator convergence (continued)

2'. Strong two-scale convergence of hyperbolic semigroups (cf.
Pastukhova 2005):

Implications for homogenisation of degenerating hyperbolic problems:
a2u€
ot?

p°(x) — div(a®(x)Vu©) = 0, v°(x,0) = f°(x), ui(x,0) = g°(x),
fe € HY, g € L2 If (for example) ¢ 2 fh(x,y) € U, g° = go(x,y) € H,
and
lim sup/ a“(x)VFe - VFIe < oo,
e—0 Q
then, for T > 0, the (unique) solution u® 2 u%(x,y,t) in L2(0, T; L%(Q)),
where 10 is the unique solution of two-scale Cauchy problem problem:

o T AT =0, W% y,0) =filx.y), uf(x,y,0) = Pao(x,y).
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Examples with the key assumption (*) not held
Cherednichenko, V.S., Zhikov (2006): highly anisotropic fibers.

a“(x) =
] ~ 1 in @ (matrix)
ail® | ~ €% in Q “across” fibers
e ~ 1 in Qo “along” fibers

Here d =3, n=1, Qp = @o x [0,1), 50C [0, 1)2?

0 0 O
aD(y) = i) + xo(y)[ 0 0 0 |, a>o0.
Then 0 0 «

V= {vy) € HY(Q): vy) = c+ (7). c€R, 7€ H(Q). 7 = (v1.y2)}

One can then see that (*) is not held, for e.g.

Va(y) = vo(¥) sin(ny1) cos(2my3), v € H3(Qo), when n — co.
However the two-scale (pseudo-) resolvent convergence is still held
(CSZ'06), via two-scale convergence with respect to measures,
dpe = x1(x/e)dx, cf. Zhikov'00.
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On the spectral convergence

The strong (two-scale) resolvent convergence implies:
Ao € (A% = 3N € o(A°) such that A° — ).

The converse property (spectral compactness) is often desired: if
X¢ € o(A®) such that A* — \g then )\ € o(A?).

It does not hold in general. However it holds in some particular cases
(which then has to be established by separate means), e.g.

- Isolated ‘soft’ inclusions (Zhikov 2000, 2001).

- Isolated soft elastic inclusions, icluding ‘semisoft (soft in shear, stiff in
compression; Cooper 2013)

Examples when it does not hold, often correspond to an ‘inter-connected’
soft phase, keeping supporting as ¢ — 0 (microscopically) quasi-periodic
Bloch waves, not described by the adopted two-scale (i.e. periodic in

y = x/e) framework. Nevertheless, in some cases the approach can be
extended to include y-quasi-perodic limits (e.g. in photinic crystal fibers
with a pre-critical propagation, Cooper Kamotski, V.S. 2014; 1-D scalar

n dni N ala
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Error bound for localized defect in a high-contrast
medium: |. Kamotski & V.S., J. Math. Sci. N.Y., 2018,
Zhikov memorial issue

OO0 O O OO OO0

o(azo)uszooo O O OO OO

™o o O O OO

O O O O O

.
a=0,0 O o O
@
0loio S eN)
000 O N0 OO O
€ a=d (g)
Q%)
A spectral problem:

Acuf = —diva®(x)Vu® = Au®, o = u°(x)

with a two-scale homogenized spectral problem A%u® = X040,
u® = u%(x,y). Then

Valery Smyshlyaev (University College Londol High-contrast homogenization of high-contra June 18, 2018 33/38



Error bound for localized defect in a high-contrast
medium: |. Kamotski & V.S., J. Math. Sci. N.Y., 2018,
Zhikov memorial issue

Then (Theorem, Kamotski & S., 2018):
Ae — Xo| < CeY/?

e — 0|, < CeV/2?
L

The latter, in combination with the results of M. Cherdantsev (2009) on
two-scale resolvent convergence for this problem and a two-scale spectral
compactness (provided no ‘resonant’ boundary cut inclusions).

Further annoncement: operator-type error bounds for generall classes of
high-contrast problems (Cooper, |. Kamotski, V.S., 2018)
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Dynamic problems with random micro-resonances

e
QF DOOOODOOOOD Q
. [000000000 ! n
Q5 00000 Oo0Joo
O0000000 r
é
0000000 |
OO0 & 1

Let Q = R3, and Qy = By, (periodic balls). Consider initial value problem

ue, — div <a€ (g) Vua) =0, u*(x,0)=g(x), ui(x,0) = h(x),

g, h compactly supported/ rapidly decaying.

Valery Smyshlyaev (University College Londol High-contrast homogenization of high-contra June 18, 2018 35/38



Dynamic problems with random micro-resonances

Let a°(y) = xa(y) + ¢ Xo( )a(w, m), m € Z3 L.1.D. with a ‘nice’
probability density p, [, p(a)da = 1.

Then, formal asymptotics gives:

ue(x,t) ~ u®(x,t) + v(x, t, x/e; w),

with (u°, v) coupled via:
_ hom 0\ __
WO, + (vee)y o — div (A Vu ) ~ 0,

u(t)t + v — a(w,m)A,v = 0,

where AT is a (classical) homogenized matrix for periodic perforated
domain.

Formal uncoupling then gives an equation for u® of a form:
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Dynamic problems with random micro-resonances

|Qulube(x, ) + Kiug (x, t) — Kou®(x, t) —
/ K(r)u(x,t —7) — div (A’"”"vxuo) =0 (+/.C.s),
0

with rather explicit K1, K, and K(7), with “right” signs.

Taking the Fourier/ Laplace transform t — w etc, seems to lead (at least
within certain ‘frequency ranges’) to a localization-type phenomenon for
u(x, t), somewhat resembling Anderson localization:

(yolyw2 +iKiw + Ko +I€(w)> WO+ APALL = —f(x,w).
Possible interpretation:

The microresonances tend to ‘capture’ the energy at frequencies close to
their eigenfrequencies; due to their randomness, a wide range of such
eigen-frequencies is represented not allowing the wave to propagate.
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Summary:

- A critical high contrast scaling due to “micro-resonances” gives rise to
numerous “non-classical” effects, described by two-scale limit problems.

- ‘Partial’ degeneracies often happen in physical problems, and give rise
to more of such effects.

- A general two-scale homogenization theory can be constructed for
such partial degeneracies, under a generically held decomposition
condition. Resulting limit (homogenized) operator is generically two-scale
(and macroscopically ‘non-local’). Strong two-scale resolvent convergence
generically holds, implying convergence of semigroups, evolution problems,
etc.

- Examples when the key assumption fails, however the conclusions are still
held via a two-scale convergence with respect to measures, Zhikov 2000.

- From convergence to (high-contrast) error bounds, etc..
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